Atjaunināt sīkdatņu piekrišanu

E-grāmata: Functional Foods and Beverages: In vitro Assessment of Nutritional, Sensory, and Safety Properties

Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 197,43 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

A much-needed guide to in vitro food functionality evaluation principles, processes, and state-of-the-art modeling 

There are more than a few books devoted to the assessment of food functionality but, until now, there were no comprehensive guides focusing on the increasingly important subject of in vitro food evaluation. With contributions from the worlds foremost experts in the field, this book brings readers up to speed on the state-of-the-art in in vitro modeling, from its physiological bases to its conception, current uses, and future developments.

Food functionality is a broad concept encompassing nutritional and health functionality, food safety and toxicology, as well as a broad range of visual and organoleptic properties of food. In vitro techniques bridge the gap between standard analytical techniques, including chemical and biochemical approaches and in vivo human testing, which remains the ultimate translational goal for evaluation of the functionality of food. Although it is a well- established field, in vitro food testing continues to evolve toward ever more accurate predictions of in vivo properties and outcomes. Both ethical and highly economical, these approaches allow for detailed mechanistic insights into food functionalities and, therefore, a better understanding of the interactions of food and human physiology.





Reviews the core concepts of food functionality and functionality evaluation methodologies Provides an overview of the physiology of the gastrointestinal tract, including host-microbial interactions within it Delves into the physiology of sensory perception of food, taste and texture as they relate to in vitro modeling Explores the challenges of linking in vitro analysis of taste, aroma and flavor to their actual perception Addresses in vitro models of the digestion and absorption of macronutrients, micronutrients, and phytonutrients Describes in vitro evaluations of toxicants, allergens and other specific food hazards

Functional Foods and Beverages is an indispensable working resource for food scientists as well as researchers working in government facilities dedicated to tracking food safety.

 
List of Contributors xv
Preface xvii
Acknowledgements xix
1 Overview of Functional Foods 1(14)
Robin A. Ralston
Amy D. Mackey
Christopher T. Simons
Steven J. Schwartz
1.1 Overview of Functional Foods
1(5)
1.1.1 Foods and Nutrients are Linked to Health and Disease
1(1)
1.1.2 Definition of Functional Foods
2(1)
1.1.3 Functional Foods Market
2(1)
1.1.4 How Functional Foods are Studied
3(3)
1.2 Functional Foods and their Regulatory Aspects
6(1)
1.3 Nanotechnologies in Functional Foods
7(2)
1.4 Sensory Functionalities of Foods
9(2)
References
11(4)
2 The In vivo Foundations for In vitro Testing of Functional Foods: The Gastrointestinal System 15(38)
Edwin K. McDonald
Heather Rasmussen
Christopher Forsyth
Ali Keshavarzian
2.1 Introduction
15(1)
2.2 Overview of the Structure of the Gastrointestinal Tract
16(4)
2.2.1 Mucosa
17(1)
2.2.2 Submucosa
17(1)
2.2.3 Muscularis (or Muscularis Propria) and Serosa (or Adventitia)
18(1)
2.2.4 Additional Components of the Gastrointestinal Tract: Accessory Organs, Vasculature, Innervation, Gut-Associated Lymphoid Tissue, and Microbiome
18(2)
2.2.4.1 Accessory Organs of the GIT
18(1)
2.2.4.2 Vasculature of the GIT: Blood and Lymphatic Supply
19(1)
2.2.4.3 GIT Innervation
19(1)
2.2.4.4 Gut-Associated Lymphoid Tissue
19(1)
2.2.4.5 Intestinal Microbiome
20(1)
2.3 Functions of the GIT and Associated In vitro Modeling
20(18)
2.3.1 Motility
21(3)
2.3.1.1 The Foundations of GIT Motility: Smooth Muscle Cell Contractions (SMC) and ENS Regulation
22(1)
2.3.1.2 In vitro Motility Modeling
23(1)
2.3.2 Barrier Function, Secretion, and Absorption
24(8)
2.3.2.1 Tight Junctions and the Barrier Function of the GIT
25(1)
2.3.2.2 Intestinal Permeability: Definitions and the Role of Tight Junctions
26(1)
2.3.2.3 Influences on Permeability
26(1)
2.3.2.4 Absorption and Secretion
27(1)
2.3.2.5 In vitro Models of Barrier Function, Absorption, and Secretion
28(4)
2.3.3 Regulation of Immune Response
32(3)
2.3.3.1 The Mucosal Immune Response Depends on IECs and GALT
32(1)
2.3.3.2 Antigen Exclusion: The Importance of Secretory IgA
32(1)
2.3.3.3 Antigen Sampling is Necessary for Immune Homeostasis
33(1)
2.3.3.4 Antigen Presenting Cells and IECs Modulate T-cell Adaptive Immune Responses
34(1)
2.3.3.5 In vitro Models of Mucosal Immunity
34(1)
2.3.4 Storage, Fermentation, and Removal of Fecal Matter
35(19)
2.3.4.1 Storage and Removal of Fecal Matter
35(1)
2.3.4.2 Colonic Fermentation
36(1)
2.3.4.3 Short-Chain Fatty Acids
37(1)
2.3.4.4 In vitro Models of Fermentation
37(1)
2.4 Limitations of In vitro Modeling of the Gastrointestinal Tract
38(2)
2.5 Dynamic In vitro Models of Digestion
40(1)
2.6 Conclusions
40(1)
References
41(12)
3 In vivo Foundations of Sensory In vitro Testing Systems 53(34)
James Hollis
3.1 Introduction
53(1)
3.2 Taste
54(11)
3.2.1 Overview
54(1)
3.2.2 Taste Anatomy
55(3)
3.2.3 Taste Coding
58(1)
3.2.4 Transduction Mechanisms
58(5)
3.2.4.1 Overview
58(1)
3.2.4.2 Sour
59(1)
3.2.4.3 Salt
60(1)
3.2.4.4 Bitter
60(1)
3.2.4.5 Sweet
61(1)
3.2.4.6 Umami
62(1)
3.2.4.7 Downstream Signaling of T1R and T2R
62(1)
3.2.5 Non-Canonical Taste Modalities
63(2)
3.2.5.1 Fat Taste
63(1)
3.2.5.2 Calcium
64(1)
3.3 Factors that Influence Taste Acuity
65(1)
3.3.1 Saliva
65(1)
3.3.2 Genetic Differences
66(1)
3.4 Chemesthesis
66(1)
3.5 The Olfactory System
67(3)
3.5.1 Olfactory Anatomy
68(1)
3.5.2 Olfactory Binding Proteins
68(1)
3.5.3 Olfactory Receptors
69(1)
3.5.4 Transduction Mechanisms
70(1)
3.6 Texture
70(3)
3.6.1 Mechanoreceptors
71(1)
3.6.2 Proprioreceptors
71(1)
3.6.3 Periodontal Receptors
72(1)
3.6.4 Central Processing of Texture
72(1)
3.7 Convergence of Taste, Smell and Texture to Produce Flavor
73(1)
3.8 Concluding Remarks
73(1)
References
74(13)
4 In vitro Models of Host-Microbial Interactions Within the Gastrointestinal Tract 87(50)
Ezgi Ozcan
Rachel Levantovsky
David A. Sela
4.1 Introduction: The Human Gastrointestinal Tract
87(4)
4.2 The Current State of In vitro Model Systems to Model Gut Ecosystems
91(2)
4.3 Batch Culture Systems to Model the Gut Microbial Consortium
93(3)
4.4 Continuous Systems to Model the Human GIT
96(11)
4.5 Mucus-Immobilized Models of the Gut
107(4)
4.6 Models to Simulate Complex Host-Microbial Interactions
111(2)
4.7 Gastric-Small Intestine Model Systems
113(7)
References
120(17)
5 Macronutrient Nutritional Functionality of Carbohydrates, Proteins and Lipids: Digestibility, Absorption and Interactions 137(34)
Amanda Wright
Susan M. Tosh
5.1 Introduction
137(2)
5.2 Applications and Considerations
139(4)
5.2.1 Carbohydrates
139(2)
5.2.2 Proteins
141(1)
5.2.3 Triglycerides
142(1)
5.3 Simulating Digestive Processes
143(7)
5.3.1 Oral Food Processing and Implications for Sample Preparation
143(2)
5.3.2 Gastric Phase
145(2)
5.3.3 Upper Intestinal Phase
147(3)
5.4 Interactions and Structural Considerations
150(1)
5.5 Post-Digestion Analysis
151(3)
5.6 In vitro Models
154(8)
5.6.1 Static Models
154(6)
5.6.1.1 INFOGEST Method for General Nutrient Digestion
154(4)
5.6.1.2 Englyst Method for Rate for Carbohydrate Digestion
158(1)
5.6.1.3 Streamlined Protein Digestibility
159(1)
5.6.1.4 pH Stat Method for Testing Emulsified Lipids
160(1)
5.6.2 Dynamic
160(2)
5.7 Limitation of In vitro Digestion Tests
162(1)
5.8 Conclusions
163(1)
References
164(7)
6 In vitro Approaches for Investigating the Bioaccessibility and Bioavailability of Dietary Nutrients and Bioactive Metabolites 171(30)
Chureeporn Chitchumroonchokchai
Mark L. Failla
6.1 Introduction
171(2)
6.2 Static Models of In vitro Digestion
173(3)
6.3 Dynamic Models of In vitro Digestion
176(1)
6.4 Application of In vitro Digestion Method for Determining the Digestive Stability and Bioaccessibility of Dietary Compounds
177(3)
6.5 Caco-2 Cell Model
180(3)
6.6 Examples of the Effects of Bioaccessible Dietary Compounds on the Functions of Absorptive Intestinal Epithelial Cells
183(2)
6.7 Coupling the In vitro Digestion and Caco-2 Cell Models
185(2)
6.8 Co-culture Models Using Caco-2 Cells
187(5)
6.9 Conclusions
192(1)
References
192(9)
7 In vitro Models for Testing Toxicity in the Gastrointestinal Tract 201(18)
Ioannis Trantakis
7.1 Introduction
201(2)
7.2 Advantages of In vitro Tests
203(1)
7.3 Limitations of Established Cell Line Models
204(1)
7.4 Single Cell Lines
205(2)
7.5 Co-culture Cell Models
207(2)
7.6 3D Co-culture Models
209(1)
7.7 Organs on a Chip
210(4)
7.8 Summary and Conclusions
214(1)
References
214(5)
8 In vitro Methods for Assessing Food Protein Allergenicity 219(44)
Ossanna Nashalian
Nicolas Bordenave
Chibuike Udenigwe
8.1 Introduction
219(1)
8.2 Food Sensitization, Hypersensitivity and Allergy
220(11)
8.2.1 The Mechanism of Developing Food Hypersensitivities
222(2)
8.2.2 The Exposure to Allergens
224(10)
8.2.2.1 The Gastrointestinal (GI) Route
225(6)
8.2.2.2 The Respiratory Tract Route
231(1)
8.2.2.3 The Cutaneous Route
231(1)
8.3 Safety Needs and Regulatory Consideration in Detecting Allergens in Food
231(3)
8.4 In vitro Analytical Methods for Testing Known Allergens
234(17)
8.4.1 Protein-Based Approaches
234(4)
8.4.2 Immunoassay Approaches
238(4)
8.4.2.1 Enzyme-Linked Immunosorbent Assay (ELISA)
238(2)
8.4.2.2 Other Immunoassay-based Methods
240(2)
8.4.3 DNA-based Approaches
242(1)
8.4.3.1 Real-Time PCR
242(1)
8.4.3.2 Microarray Assay
242(1)
8.4.4 Mass Spectrometry-based Approaches
243(1)
8.4.5 In vitro Cell-based Methods for the Prediction of Food Allergenicity
243(3)
8.4.6 In Silico Methods for the Prediction of Food Allergenicity
246(5)
References
251(12)
9 Challenges of Linking In vitro Analysis to Flavor Perception 263(42)
Avinash Kant
Rob Linforth
9.1 Introduction
263(1)
9.2 What is "Flavor"?
264(5)
9.2.1 Flavor Analysis Overview
264(1)
9.2.2 Significance of Aroma Compounds
265(1)
9.2.3 Challenges of Food Flavor Compounds
266(3)
9.3 Overview of Flavor Analysis Techniques
269(4)
9.3.1 Key Isolation Techniques
269(1)
9.3.2 Taste Compound Isolation
270(1)
9.3.3 Aroma Compound Isolation
270(2)
9.3.3.1 Solvent Extraction
270(1)
9.3.3.2 Distillation
271(1)
9.3.3.3 Headspace
271(1)
9.3.4 Taste Compound Detection
272(1)
9.3.5 Aroma Compound Separation and Detection
272(1)
9.4 Further Developments in Aroma Analysis
273(9)
9.4.1 Gas Chromatography-Olfactometry
273(1)
9.4.2 Interpretation of GC-Olfactometry Data
274(3)
9.4.3 Recent Advances in Aroma Extract Preparation
277(1)
9.4.4 Solid-Phase MicroExtraction
277(2)
9.4.5 Advances in Solvent Assisted Flavor Extraction
279(1)
9.4.6 Challenges of Single Aroma Compound Data Interpretation
280(1)
9.4.7 Correlation of the Sensory Experience with GC Data
281(1)
9.5 Recent Advances Developing In vitro Flavor Analysis Tools
282(4)
9.5.1 Electronic Devices for Flavor Assessment
282(1)
9.5.2 eNose
283(1)
9.5.3 eTongue
284(1)
9.5.4 Further Developments in Electronic Flavor Devices
285(1)
9.6 Model Mouth Systems
286(1)
9.7 Real Time Studies of Flavor Delivery
287(5)
9.8 Future Direction of In vitro Flavor Studies
292(6)
9.8.1 Taste Research
292(2)
9.8.2 Taste Cell Model Systems
294(1)
9.8.3 Odor Receptors
295(1)
9.8.4 Sensomics Approach
296(1)
9.8.5 Interaction Effects and Multi-modal Perception
297(1)
9.8.6 Brain Imaging by fMRI
297(1)
9.9 Summary
298(2)
References
300(5)
Index 305
Nicolas Bordenave, PhD, Assistant Professor, Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, Canada



Mario G. Ferruzzi, PhD, Professor of Food Science and Nutrition, Department of Food, Bioprocessing and Nutrition Science, Plants for Human Health Institute, North Carolina State University, Raleigh, USA