Atjaunināt sīkdatņu piekrišanu

E-grāmata: Functional Metamaterials and Metadevices

  • Formāts: EPUB+DRM
  • Sērija : Springer Series in Materials Science 262
  • Izdošanas datums: 14-Sep-2017
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319660448
  • Formāts - EPUB+DRM
  • Cena: 165,96 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Sērija : Springer Series in Materials Science 262
  • Izdošanas datums: 14-Sep-2017
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319660448

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

To meet the demands of students, scientists and engineers for a systematic reference source, this book introduces, comprehensively and in a single voice, research and development progress in emerging metamaterials and derived functional metadevices. Coverage includes electromagnetic, optical, acoustic, thermal, and mechanical metamaterials and related metadevices. Metamaterials are artificially engineered composites with designed properties beyond those attainable in nature and with applications in all aspects of materials science. From spatially tailored dielectrics to tunable, dynamic materials properties and unique nonlinear behavior, metamaterial systems have demonstrated tremendous flexibility and functionality in electromagnetic, optical, acoustic, thermal, and mechanical engineering.  Furthermore, the field of metamaterials has been extended from the mere pursuit of various exotic properties towards the realization of practical devices, leading to the concepts of dynamically-reconfigurable metadevices and functional metasurfaces. The book explores the fundamental physics, design, and engineering aspects, as well as the full array of state-of-the-art applications to electronics, telecommunications, antennas, and energy harvesting. Future challenges and potential in regard to design, modeling and fabrication are also addressed.

Recenzijas

The book is easy to read, but it is also very specialized, so it is recommended for students, scientists, and engineers in materials, electronics, optics, mechanics, acoustics, telecommunications, or related areas . I enjoyed reading the book; concepts are explained well, with examples of a wide variety of functional metamaterials and metadevices applications. The audience for this book would be students, pro­fessionals, or researchers in the areas of physics, optoelectronic engineering, electronics, mechanics, materials engi­neering or nanotechnology. (Miriam Sįnchez Pozos,MRS Bulletin, Vol. 44 (2), February, 2019)

1 Concepts From Metamaterials to Functional Metadevices
1(22)
1.1 Rationale for Metamaterials Exploration
1(1)
1.2 Classification of Metamaterials
2(2)
1.3 Evolution of Metamaterials
4(4)
1.4 Emerging Functional Metadevices
8(15)
1.4.1 Reconfigurable and Tunable Metadevices
8(2)
1.4.2 Electro-Optical Metadevices
10(2)
1.4.3 Liquid-Crystal Metadevices
12(1)
1.4.4 Phase-Change Metadevices
13(2)
1.4.5 Superconducting Metadevices
15(1)
1.4.6 Ultrafast Photonic Metadevices
16(2)
1.4.7 Nonlinear Metadevices with Varactors
18(1)
1.4.8 Metadevices Driven by Electromagnetic Forces
19(1)
1.4.9 Acoustic Metadevice
20(1)
References
21(2)
2 Design and Fabrication of Metamaterials and Metadevices
23(16)
2.1 Common Design Approaches for Metamaterials
23(3)
2.1.1 Resonant Approach
23(1)
2.1.2 Transmission Line Approach
24(1)
2.1.3 Hybrid Approach
25(1)
2.2 General Tuning Methods for Metadevices
26(1)
2.3 Fabrication Technology
27(7)
2.3.1 Photolithography
27(1)
2.3.2 Shadow Mask Lithography
27(1)
2.3.3 Soft Lithography
28(2)
2.3.4 Electron Beam Lithography
30(2)
2.3.5 3D Metamaterial Fabrication Techniques
32(2)
2.4 Tuning Techniques
34(5)
2.4.1 Mechanical Tuning
34(1)
2.4.2 Electromechanical Displacement
35(1)
2.4.3 Lattice Displacement
35(1)
2.4.4 Thermal Stimulation
35(1)
2.4.5 Material Tuning
36(1)
References
36(3)
3 Electromagnetic Metamaterials and Metadevices
39(18)
3.1 Fundamental Theory of Electromagnetic Metamaterials
39(2)
3.2 Single-Negative Metamaterials
41(3)
3.2.1 Metamaterials with Negative Effective Permittivity in the Microwave Regime
41(2)
3.2.2 Metamaterials with Negative Effective Permeability in the Microwave Regime
43(1)
3.3 Double-Negative Metamaterials
44(1)
3.4 Zero-Index Metamaterials
45(3)
3.5 Electromagnetic Bandgap Metamaterials
48(4)
3.5.1 Types of EBG Structures
48(1)
3.5.2 Numerical Modeling of EBG
48(2)
3.5.3 EBG Applications
50(2)
3.6 Bi-isotropic and Bi-anisotropic Metamaterials
52(1)
3.7 Microwave Metamaterial-Inspired Metadevices
53(4)
References
55(2)
4 Terahertz Metamaterials and Metadevices
57(14)
4.1 Introduction
57(1)
4.2 Passive-Type Terahertz Metamaterials
58(4)
4.2.1 Terahertz Metamaterials with Electric Responses
58(1)
4.2.2 Terahertz Metamaterials with Magnetic Responses
59(1)
4.2.3 Terahertz Metamaterials with Negative Refractive Indices ...
60(1)
4.2.4 Broadband Terahertz Metamaterials
61(1)
4.3 Active-Type Terahertz Metamaterials
62(6)
4.3.1 Electrically Tunable THz Metamaterials
63(2)
4.3.2 Optically Tunable THz Metamaterials
65(2)
4.3.3 Mechanically Tunable THz Metamaterials
67(1)
4.4 Flexible THz Metamaterials
68(3)
References
70(1)
5 Photonic Metamaterials and Metadevices
71(36)
5.1 Introduction
71(2)
5.2 Photonic Crystals
73(4)
5.2.1 A Historical Account
74(1)
5.2.2 Construction of Photonic Crystals
75(2)
5.2.3 Applications of Photonic Crystals
77(1)
5.3 Metamaterials Designed Through Transformation Optics
77(3)
5.3.1 Metamaterials Mimicking Celestial Mechanics
78(1)
5.3.2 Metamaterial Gradient Index Lensing
79(1)
5.3.3 Battlefield Applications
79(1)
5.4 Hyperbolic Metamaterials
80(10)
5.4.1 Hyperbolic Media in Retrospect
80(3)
5.4.2 Design and Building Materials
83(2)
5.4.3 Photonic Hypercrystals
85(2)
5.4.4 Applications of Hyperbolic Metamaterials
87(3)
5.5 Superconducting and Quantum Metamaterials
90(9)
5.5.1 Low-Loss Metamaterials
92(1)
5.5.2 Compact Meta-Atom Structure
93(1)
5.5.3 Superconducting Metamaterials with Nonlinearity and Tenability
94(1)
5.5.4 Superconducting Metamaterials with Magnetic Flux Quantization and Josephson Effect
95(1)
5.5.5 Diamagnetic Metamaterials
95(1)
5.5.6 Quantum Metamaterials
96(3)
5.6 Nanomechanical Photonic Metamaterials
99(8)
5.6.1 Electrostatic Actuation
101(1)
5.6.2 Thermal Actuation
102(1)
5.6.3 Magnetic Actuation
103(1)
5.6.4 Optical Actuation
104(1)
References
105(2)
6 Chiral Metamaterials and Metadevices
107(22)
6.1 Historical Perspective
107(1)
6.2 Chirality Parameter and Ellipticity
108(1)
6.3 Typical Chiral Metamaterials
109(9)
6.3.1 Chiral Metamaterials with Negative Refractive Index
109(3)
6.3.2 3D Chiral Metamaterials
112(2)
6.3.3 Self-assembled Chiral Metamaterials
114(3)
6.3.4 Gyroid Metamaterials
117(1)
6.3.5 Nonlinear Chiral Metamaterials
118(1)
6.4 Chiroptical Effects
118(3)
6.4.1 Extrinsic Chirality
118(2)
6.4.2 Superchiral Fields
120(1)
6.5 Typical Applications of Chiral Metamaterials
121(8)
6.5.1 Chiral Metamaterial Sensors
121(1)
6.5.2 Nonlinear Optics in Chiral Metamaterials
121(1)
6.5.3 Chiral Light-Matter Interactions
122(3)
6.5.4 Active Chiral Metamaterials
125(2)
References
127(2)
7 Plasmonic Metamaterials and Metasurfaces
129(26)
7.1 Plasmonic Meta-atoms and Their Interactions
129(2)
7.2 Plasmonic Metamaterials Implementing Negative Refraction and Negative Refractive Index
131(3)
7.3 Plasmonic Metasurfaces
134(5)
7.4 Graphene-based Plasmonic Metamaterials
139(4)
7.5 Self-assembled Plasmonic Metamaterials
143(3)
7.6 Application Perspective
146(9)
7.6.1 Optical Nanocircuits and Nanoantennas
146(4)
7.6.2 Functional Metasurfaces
150(2)
7.6.3 Plasmonic Metamaterials for Sensing
152(1)
References
152(3)
8 Metamaterials Inspired Frequency Selective Surfaces
155(18)
8.1 Evolution of Frequency Selective Surfaces
155(3)
8.2 Design of Metamaterial-Based Miniaturized-Element Frequency Selective Surfaces
158(2)
8.3 Printed Flexible and Reconfigurable Frequency Selective Surfaces
160(4)
8.4 Metamaterials Inspired FSS Antennas and Circuits
164(3)
8.4.1 Ultra-Wideband Antennas and Microstrip Filters
165(1)
8.4.2 Microstrip Antennas with HIS Ground Plane
165(1)
8.4.3 Fabry--Perot Antenna
166(1)
8.5 Metamaterials Inspired Microfluidic Sensors
167(3)
8.6 Metamaterials Inspired Rotation and Displacement Sensors
170(3)
References
170(3)
9 Nonlinear Metamaterials and Metadevices
173(28)
9.1 Introduction
173(1)
9.2 Implementation Approaches to Manufacture Nonlinear Metamaterials
174(6)
9.2.1 Insertion of Nonlinear Elements
174(1)
9.2.2 Nonlinear Host Medium
175(2)
9.2.3 Local Field Enhancement
177(1)
9.2.4 Nonlinear Transmission Lines
178(1)
9.2.5 Intrinsic Structural Nonlinearity
179(1)
9.2.6 Nonlinear Metamaterials with Quantum and Superconducting Elements
180(1)
9.3 Nonlinear Responses and Effects
180(8)
9.3.1 Nonlinear Self-Action
180(2)
9.3.2 Frequency Conversion and Parametric Amplification
182(3)
9.3.3 Surface Effects
185(2)
9.3.4 Nonlinear Guided Waves and Solitons
187(1)
9.3.5 Discreteness Effects
187(1)
9.4 Applications of Nonlinear Metamaterials Toward Functional Metadevices
188(13)
9.4.1 Controlling Light with Nonlinear Metamaterials
188(3)
9.4.2 Nonlinear Terahertz Metadevices
191(3)
9.4.3 Control of Quantum Dot Emission
194(1)
9.4.4 Metamaterial RF Limiter
195(1)
9.4.5 Metamaterials-Based Energy Harvesting
196(2)
9.4.6 Nonlinear Metamaterials for Holography
198(1)
References
199(2)
10 Acoustic Metamaterials and Metadevices
201(18)
10.1 Historical Perspective and Basic Principles
201(1)
10.2 Dynamic Negative Density and Compressibility
202(2)
10.3 Membrane-Type Acoustic Materials
204(5)
10.4 Transformation Acoustics and Metadevices with Spatially Varying Index
209(1)
10.5 Space-Coiling and Acoustic Metasurfaces
210(2)
10.6 Acoustic Absorption
212(2)
10.7 Active Acoustic Metamaterials
214(1)
10.8 Emerging Directions and Future Trends
214(5)
10.8.1 Nonlinear Acoustic Metamaterials
214(1)
10.8.2 Nonreciprocal Acoustic Devices
215(1)
10.8.3 Elastic and Mechanical Metamaterials
215(1)
10.8.4 Graphene-Inspired Acoustic Metamaterials
215(1)
10.8.5 Acoustic Metamaterials with Characteristics Describable by non-Hermitian Hamiltonians
216(1)
10.8.6 Future Trends
216(1)
References
217(2)
11 Mechanical Metamaterials and Metadevices
219(24)
11.1 Introduction
219(2)
11.2 Auxetic Mechanical Metamaterials
221(9)
11.2.1 Reentrant Structures
222(4)
11.2.2 Auxetic Chiral Structures
226(2)
11.2.3 Rotating Rigid and Semirigid Auxetic Structures
228(1)
11.2.4 Dilational Metamaterials
228(2)
11.2.5 Potential Applications of Auxetic Metamaterials
230(1)
11.3 Penta-Mode Metamaterials
230(2)
11.4 Ultra-Property Metamaterials
232(1)
11.5 Negative-Parameter Metamaterials
233(1)
11.6 Mechanical Metamaterials with Tunable Negative Thermal Expansion
234(2)
11.7 Active, Adaptive, and Programmable Metamaterials
236(1)
11.8 Origami-Based Metamaterials
237(2)
11.9 Mechanical Metamaterials as Seismic Shields
239(1)
11.10 Future Trends
239(4)
References
241(2)
12 Perspective and Future Trends
243(28)
12.1 Emerging Metamaterials Capabilities and new Concepts
243(7)
12.1.1 Virtual Photon Interactions Mediated by Metamaterials
243(1)
12.1.2 Routes to Aperiodic and Correlation Metamaterials
244(2)
12.1.3 Mathematical Operations and Processing with Structured Metamaterials
246(2)
12.1.4 Topological Effects in Metamaterials
248(2)
12.2 Manipulation of Metasurface Properties
250(7)
12.2.1 Functionally Doped Metal Oxides for Future Ultrafast Active Metamaterials
250(2)
12.2.2 Optical Dielectric Metamaterials and Metasurfaces
252(2)
12.2.3 Beam Shaping with Metasurfaces
254(2)
12.2.4 Control of Emission and Absorption with Metamaterials
256(1)
12.2.5 Control of Far-Field Thermal Emission Properties through the use of Photonic Structures
257(1)
12.3 Research Trends of Nonlinear, Active and Tunable Properties
257(5)
12.3.1 Engineering Mid-Infrared and Optical Nonlinearities with Metamaterials
257(2)
12.3.2 Directional Control of Nonlinear Scattering from Metasurfaces
259(1)
12.3.3 Coherent Control in Planar Photonic Metamaterials
260(1)
12.3.4 Nanomechanical Photonic Metamaterials
261(1)
12.4 Emerging Metadevices and Applications
262(3)
12.4.1 RF Beam Steering Module with Metamaterials Electronically Scanned Array
262(1)
12.4.2 Smart Metamaterial Antennas
263(1)
12.4.3 Energy Harvesting Enhanced with Metamaterials
263(1)
12.4.4 Focus Magnetic Stimulation
264(1)
12.4.5 Thermophotovoltaics
264(1)
12.4.6 Transparent Thermal Barrier
265(1)
12.4.7 Passive Radiative Cooling
265(1)
12.5 Prospective Manufacturing and Assembly Technologies of Metamaterials and Metadevices
265(6)
12.5.1 Nanoparticles for Complex Multimaterial Nanostructures
265(1)
12.5.2 Eutectics as Metamaterials
266(2)
12.5.3 Large Area Roll-to-Roll Processing
268(1)
References
268(3)
Index 271