Atjaunināt sīkdatņu piekrišanu

E-grāmata: Fundamentals of Aluminium Metallurgy: Recent Advances

Edited by (Technical Manager, AW Bell, Australia)
  • Formāts - EPUB+DRM
  • Cena: 276,13 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Fundamentals of Aluminium Metallurgy: Recent Advances updates the very successful book Fundamentals of Aluminium Metallurgy. As the technologies related to casting and forming of aluminum components are rapidly improving, with new technologies generating alternative manufacturing methods that improve competitiveness, this book is a timely resource. Sections provide an overview of recent research breakthroughs, methods and techniques of advanced manufacture, including additive manufacturing and 3D printing, a comprehensive discussion of the status of metalcasting technologies, including sand casting, permanent mold casting, pressure diecastings and investment casting, and recent information on advanced wrought alloy development, including automotive bodysheet materials, amorphous glassy materials, and more.

Target readership for the book includes PhD students and academics, the casting industry, and those interested in new industrial opportunities and advanced products.

  • Includes detailed and specific information on the processing of aluminum alloys, including additive manufacturing and advanced casting techniques
  • Written for a broad ranging readership, from academics, to those in the industry who need to know about the latest techniques for working with aluminum
  • Comprehensive, up-to-date coverage, with the most recent advances in the industry
Contributors xv
Introduction: Aluminium, The Strategic Material xvii
Chapter 1 New Research Techniques in Aluminium Alloy Development
1(46)
Ross K.W. Marceau
Thomas Dorin
1.1 Introduction
1(1)
1.2 Transmission Electron Microscopy
1(12)
1.2.1 Aberration-Corrected Scanning Transmission Electron Microscopy
1(9)
1.2.2 In Situ TEM Corrosion Studies
10(3)
1.3 Atom Probe Tomography
13(8)
1.3.1 Atom-by-Atom Analysis of the Solid Solution Phase
13(4)
1.3.2 Atom Probe Crystallography
17(2)
1.3.3 Corrosion Investigation
19(2)
1.4 Small-Angle X-Ray Scattering
21(8)
1.4.1 SAXS Mapping
23(1)
1.4.2 In Situ Heating/Cooling Studies
23(3)
1.4.3 In Situ Deformation Studies
26(3)
1.5 Combinatorial and Correlative Characterization Approaches
29(5)
1.5.1 Various Combinations of Techniques vs Combinatorial Investigations
29(1)
1.5.2 Direct Correlative vs Complementary
30(4)
1.6 Conclusion
34(13)
References
34(13)
Chapter 2 Additive Manufacturing of Aluminium-Based Alloys and Composites
47(46)
Sri Lathabai
2.1 Introduction
47(6)
2.2 Additive Manufacturing Processes for Aluminium Alloys
53(5)
2.2.1 Selective Laser Melting
53(4)
2.2.2 Directed Energy Deposition Processes
57(1)
2.3 Aluminium Alloys for Additive Manufacturing
58(20)
2.3.1 Aluminium-Silicon Alloys
58(12)
2.3.2 Al-Cu Alloys
70(3)
2.3.3 Al-Mg-Sc Alloys
73(2)
2.3.4 Other Al-Based Alloy Systems
75(1)
2.3.5 Alloy Design for AM
76(2)
2.4 Aluminium-Matrix Composites by AM
78(3)
2.5 Summary
81(12)
References
83(10)
Chapter 3 How to Design and Buy Aluminium Castings
93(30)
Roger N. Lumley
3.1 The Design Process
93(2)
3.2 Elements of Good Casting Design
95(2)
3.3 Equal and Unequal Sections
97(1)
3.4 Junctions
98(2)
3.5 Gates, Risers, and Rigging
100(1)
3.6 The Relationship Between Casting Method, Number of Parts, and Achievable Tolerances
101(6)
3.7 Specification of Safety Factors
107(1)
3.8 Factors of Safety in Critical Applications
107(2)
3.9 Factors of Safety and Materials With Uncertainties
109(2)
3.10 Casting Factors
111(4)
3.11 Specification of NDT
115(2)
3.12 Rework and In-Process Welding
117(3)
3.13 Summary
120(3)
References
120(3)
Chapter 4 Aluminium Investment Casting and Rapid Prototyping for Aerospace Applications
123(36)
Roger N. Lumley
4.1 Introduction
123(1)
4.2 The Pattern
124(9)
4.3 Rapid Prototyping for Investment Casting
133(3)
4.4 The Production of High-Integrity Investment Castings
136(6)
4.5 Towards a Fundamental Understanding of the Requirements of Casting Factor 1.0 and a Quality Model for Premium Aluminium Investment Castings
142(1)
4.6 Experiments
143(5)
4.7 Comparison to Production Components and Test Bars
148(2)
4.8 Determination and Verification of Casting Factor 1.0 for a Premium Investment Casting Process Using A356-T6 Alloy
150(6)
4.9 Summary and Conclusions
156(3)
Acknowledgement
156(1)
References
156(3)
Chapter 5 Advances in the Sand Casting of Aluminium Alloys
159(14)
David Weiss
5.1 Introduction
159(1)
5.2 Moulding Types
160(3)
5.2.1 Green Sand Moulding
160(1)
5.2.2 Chemically Bonded Sand Moulding
161(1)
5.2.3 Shell Process
161(1)
5.2.4 Inorganic Binder Systems
162(1)
5.3 Ablation Casting
163(3)
5.4 Alternative Casting Methods
166(2)
5.5 Printed Sand Moulds and Cores for Casting
168(5)
References
171(2)
Chapter 6 New Hypoeutectic/Hypereutectic Die-Casting Alloys and New Permanent Mould Casting Alloys That Rely on Strontium for Their Die Soldering Resistance
173(44)
Raymond J. Donahue
Roger N. Lumley
6.1 Introduction
173(1)
6.2 The Elements That Provides Die Soldering Resistance at the Lowest Volume Fraction Means Lower Mn and Higher Fe Can Be Used in Structural Aluminium Die-Casting Alloys
174(3)
6.2.1 Die Soldering and Intermetallics
174(3)
6.3 Strontium, Its Thermodynamics in Aluminium Melts and Its Measured Benefits in Providing Die Soldering Resistance as Strontium Aluminate at 500 ppm
177(4)
6.4 Using Strontium in Permanent Mould Alloys to Create the Low-Pressure PM Casting Process Without a Die Coating and 16 New PM Casting Alloys
181(9)
6.4.1 Strontium, Manganese and Iron Have a Synergistic Role in Eliminating Die Soldering
181(1)
6.4.2 Conversion of Conventional Permanent Mould Alloys to Alloys Displaying Die Soldering Resistance
182(1)
6.4.3 Measures of Mechanical Properties to Distinguish Between Castings Made With or Without a Coating
183(7)
6.5 Using Strontium to Create Unique Microstructures for Die Cast Hypereutectic Al-Si-(Cu)-Mg Alloys Having Elongations Over 2%
190(6)
6.5.1 Conventional Hypereutectic Al-Si Alloys, Their History, and Microstructure
190(4)
6.5.2 Using the Al-Si Phase Diagram to Understand the Unique Undercooled Microstructure
194(1)
6.5.3 Mechanical Properties of Alloys With Unique Microstructures
195(1)
6.6 Structural Aluminium Die-Casting Alloys With the Same Numeric Designations as Existing Registered PM and Die-Casting Aluminium Association Alloys
196(172)
6.6.1 Examples of New HPDC Alloys That Will Allow the Die Caster to Compete for PM Applications
196(2)
6.6.2 What Constitutes a Modification to an Existing Registered Aluminium Association Alloy and Still Preserves the Original Designation of That Alloy?
198(6)
6.7 Analysing Effects of Iron on T5 Mechanical Properties for B360, 367, 362, F380, and 368 Using Quality Index
204(1)
6.7.1 As-Cast Results
205(1)
6.7.2 T5 Results
206(3)
6.7.3 Comparison to T6 Treated Alloy
209(1)
6.7.4 Discussion of Compositional Differences With Alloys 367, B360, 362, F380, and 368
210(2)
6.8 Conclusions
212(5)
Acknowledgements
213(1)
References
213(4)
Chapter 7 Thermal Conductivity of Aluminium High-Pressure Die Castings
217(32)
Roger N. Lumley
7.1 Introduction
217(2)
7.2 Motor
219(1)
7.3 Voltage Inverter
220(4)
7.4 Thermal Conductivity of Metals and Alloys
224(6)
7.5 Values of Thermal Conductivity for Aluminium Castings
230(3)
7.6 The Role of Alloy Composition and Heat Treatment on Thermal Conductivity of Die Castings
233(1)
7.7 Age Hardening
234(1)
7.8 Alloys 1 and 2
235(2)
7.9 Alloys 3-5
237(3)
7.10 Microstructures
240(4)
7.11 Summary
244(5)
References
244(5)
Chapter 8 Advanced Casting Technologies Using High Shear Melt Conditioning
249(30)
Geoffry Scamans
Hu-Tian Li
Jaime Lazaro Nebreda
Jayesh Patel
Ian Stone
Yun Wang
Xinliang Yang
Zhongyun Fan
8.1 Introduction
249(4)
8.1.1 Dispersion of Oxide Particles in Aluminium Melts by HSMC
250(2)
8.1.2 Grain Refinement by Oxides Dispersed by HSMC
252(1)
8.2 High Shear Melt Conditioned Direct-Chill Casting of Al Alloys
253(3)
8.3 Reduction of Macrosegregation and Microporosity
256(6)
8.3.1 Refinement and Uniform Distribution of Second Phases
256(1)
8.3.2 Improved Castability and Recyclability
257(1)
8.3.3 Sump Profile and Thermal Gradient
258(2)
8.3.4 Solidification Mechanism During DC and MC-DC Casting
260(2)
8.4 Efficient Degassing of Aluminium Alloy Melts by High Shear Melt Conditioning Technology
262(3)
8.4.1 High Shear Degassing
264(1)
8.5 Physical Modelling of the High Shear Process
265(4)
8.6 Deironing of Aluminium Scrap by High Shearing Processing
269(5)
8.6.1 Sedimentation After High Shear Processing
272(1)
8.6.2 Sedimentation in Continuous Casting Processing
273(1)
8.7 Summary
274(5)
Acknowledgements
275(1)
References
275(2)
Further Reading
277(2)
Chapter 9 Treatment by External Fields
279(54)
Gui Wang
Matthew Dargusch
Mark Easton
David StJohn
9.1 Introduction
279(1)
9.2 Electromagnetic Stirring
280(4)
9.3 Vibration
284(11)
9.3.1 Electromagnetic Vibration
284(5)
9.3.2 Ultrasonic Treatment
289(6)
9.4 Pulsed Power Techniques
295(21)
9.4.1 Electric Current Pulses
296(7)
9.4.2 Pulsed Magnetic Field
303(13)
9.5 Grain Refinement Mechanisms
316(11)
9.5.1 Specific Effects of the External Fields and Grain Refinement Mechanism
316(5)
9.5.2 Grain Refinement Theory
321(6)
9.6 Conclusions and Future Developments
327(6)
References
328(5)
Chapter 10 Automotive Wrought Aluminium Alloys
333(54)
Alex Poznak
Daniel Freiberg
Paul Sanders
10.1 Automotive Lightweighting and Wrought Aluminium
333(5)
10.1.1 Automotive Lightweighting
333(2)
10.1.2 The Case for Aluminium
335(3)
10.2 Common Processing Methods
338(6)
10.2.1 Elements of Bulk Deformation Processing for Automotive Applications
338(3)
10.2.2 Bulk Deformation Processes
341(2)
10.2.3 Thermal Treatment
343(1)
10.3 General Metallurgy and Strengthening Mechanisms in Automotive Wrought Al
344(4)
10.3.1 Solid Solution (Point) Strengthening
345(1)
10.3.2 Precipitation Strengthening
346(2)
10.4 Heat-Treatable Alloys
348(16)
10.4.1 6xxx Series Al-Mg-Si-(Cu)
348(13)
10.4.2 Specialty Alloys
361(3)
10.5 Nonheat-Treatable Alloys
364(6)
10.5.1 5xxx Series Al-Mg-(Mn) Alloys
364(6)
10.6 Application of Aluminium Alloys in Automotive Design and Manufacture
370(5)
10.6.1 Overview of Current Automotive Applications
370(1)
10.6.2 Formability
371(1)
10.6.3 Sheet Metal Forming
372(2)
10.6.4 Hydro-Forming and Stretch Bending
374(1)
10.7 Future Automotive Wrought Al Potential
375(12)
References
376(11)
Chapter 11 Aluminium Lithium Alloys
387(52)
Thomas Dorin
Alireza Vahid
Justin Lamb
11.1 Introduction
387(1)
11.2 A Brief History
388(1)
11.3 Third Generation Al---Li Alloys
389(7)
11.3.1 Characteristic Properties
389(4)
11.3.2 Applications
393(3)
11.4 Physical Metallurgy of Al-Cu-Li Alloys
396(16)
11.4.1 Precipitation
397(9)
11.4.2 The Effect of Minor Alloying Elements
406(3)
11.4.3 Texture Development and Texture Anisotropy in Al---Li Alloys: The Case of Extrusion
409(3)
11.5 Processing
412(9)
11.5.1 Casting
412(1)
11.5.2 Hot Forming Processes
413(2)
11.5.3 Cold Work Operations
415(1)
11.5.4 Artificial Ageing
416(1)
11.5.5 Friction Stir Welding
417(1)
11.5.6 Nonequilibrium Processes
418(3)
11.6 Strengthening Mechanisms
421(3)
11.6.1 Work Hardening
421(1)
11.6.2 Solid Solution Hardening
421(1)
11.6.3 Precipitation Hardening: The Case of the T1 Phase
422(1)
11.6.4 Addition Rules
423(1)
11.7 Conclusions
424(15)
Acknowledgements
424(1)
References
425(13)
Further Reading
438(1)
Chapter 12 Aluminium Scandium Alloys
439(56)
Thomas Dorin
Mahendra Ramajayam
Alireza Vahid
Timothy Langan
12.1 Introduction
439(1)
12.2 Scandium---State of the Art
440(2)
12.3 Sc Containing Al Alloys
442(27)
12.3.1 The Binary Al-Sc System (1xxx Series)
444(5)
12.3.2 The Ternary Al-Sc-Zr System
449(3)
12.3.3 Al-Cu-(Mg)-(Mn)-Sc-(Zr) (2xxx Series)
452(4)
12.3.4 Al-Mn-Sc I3xxx Series)
456(3)
12.3.5 Al-Si-Sc-(Mg) (4xxx/6xxx Series)
459(2)
12.3.6 Al-Mg-Sc-(Zr) (5xxx Series)
461(3)
12.3.7 Al-Zn-Mg-Sc-(Cu)-(Zr) (7xxx Series)
464(2)
12.3.8 Al-Li-Sc-ICu)-(Zr) (8xxx Series)
466(1)
12.3.9 Possible Substitutes for Sc in Al3Sc
467(2)
12.4 The Antirecrystallization Effect of Scandium
469(2)
12.5 Effect of Scandium on the Corrosion Performance
471(1)
12.6 The Superplasticity Effect of Scandium
472(1)
12.7 Applications of Al-Sc Alloys
473(2)
12.8 Conclusion
475(20)
Acknowledgements
475(1)
References
475(20)
Chapter 13 Control of Distortion in Aluminium Heat Treatment
495(30)
Hossain M.M.A. Rashed
13.1 Introduction
495(1)
13.2 Distortion and Its Effects in Aluminium Alloys
496(1)
13.3 Distortion Mechanisms
496(4)
13.3.1 Residual Stresses
497(1)
13.3.2 Development of Residual Stress
498(2)
13.3.3 Types of Residual Stress
500(1)
13.4 Control of Distortion by Modification of Alloy Composition
500(4)
13.5 Distortion During Solution Heat Treatment
504(1)
13.6 Distortion During Quenching of Aluminium Components
505(6)
13.6.1 Common Quenching Techniques
505(1)
13.6.2 Effects of Surface Condition
506(1)
13.6.3 Impact of Quenchant and Quench Sensitivity
507(2)
13.6.4 Effects of Component Dimension
509(2)
13.6.5 Effects of Component Shape
511(1)
13.7 Distortion During Ageing Heat Treatment
511(1)
13.8 Control of Distortion by Stress Relaxation Through Mechanical Working
512(4)
13.8.1 Mechanical Stretching
512(2)
13.8.2 Mechanical Compression
514(2)
13.8.3 Vibratory Stress Relief Technique
516(1)
13.9 Control of Distortion by Stress Relaxation Through Thermal Treatment
516(3)
13.10 Summary
519(6)
References
519(6)
Chapter 14 Recent Insights Into Corrosion Initiation at the Nanoscale
525(28)
Reza Parvizi
Mike Y. Tan
Anthony E. Hughes
14.1 Introduction
525(1)
14.2 Microstructures
526(4)
14.3 Nanostructure
530(2)
14.4 Corrosion From the Micron-Scale to the Nanoscale
532(3)
14.5 Aluminium Surfaces
535(3)
14.5.1 Surface Oxides
536(2)
14.5.2 Surface Layers
538(1)
14.6 Corrosion in Corrosion Susceptible Nanostructures
538(4)
14.7 Conclusions
542(11)
References
543(10)
Index 553
Dr Roger Lumley is Principal Research Scientist at CSIRO's Light Metals Flagship in Melbourne, Australia. He has internationally-recognised expertise in the design and processing of aluminium alloys. Dr Roger Lumley is the Technical Manager at AWBell in Dandenong South, Australia.. He is a physical metallurgist with over 20 years experience in materials engineering, manufacturing, R&D and project management. Roger has degrees in Materials Science & Engineering from the University of QLD, and is a registered (chartered) Mechanical Engineer. In addition to being a Fellow of the Australian Academy of Technological Sciences and Engineering, he is also a Fellow of the Institute of Engineers, Australia. He is a member of Materials Australia, the American Foundry Society, The Minerals, Metals and Materials Society as well as The Welding Institute (UK). He is internationally recognised in both research and industry for his work in materials engineering and his contributions to manufacturing industries