Atjaunināt sīkdatņu piekrišanu

Fundamentals of Estuarine Physical Oceanography 1st ed. 2017 [Hardback]

  • Formāts: Hardback, 480 pages, height x width: 235x155 mm, weight: 8867 g, 17 Illustrations, color; 121 Illustrations, black and white; XXXII, 480 p. 138 illus., 17 illus. in color., 1 Hardback
  • Sērija : Ocean Engineering & Oceanography 8
  • Izdošanas datums: 09-Feb-2017
  • Izdevniecība: Springer Verlag, Singapore
  • ISBN-10: 9811030405
  • ISBN-13: 9789811030406
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 118,31 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 139,19 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 480 pages, height x width: 235x155 mm, weight: 8867 g, 17 Illustrations, color; 121 Illustrations, black and white; XXXII, 480 p. 138 illus., 17 illus. in color., 1 Hardback
  • Sērija : Ocean Engineering & Oceanography 8
  • Izdošanas datums: 09-Feb-2017
  • Izdevniecība: Springer Verlag, Singapore
  • ISBN-10: 9811030405
  • ISBN-13: 9789811030406
Citas grāmatas par šo tēmu:
This book provides an introduction to the complex system functions, variability and human interference in ecosystem between the continent and the ocean. It focuses on circulation, transport and mixing of estuarine and coastal water masses, which is ultimately related to an understanding of the hydrographic and hydrodynamic characteristics (salinity, temperature, density and circulation), mixing processes (advection and diffusion), transport timescales such as the residence time and the exposure time.

In the area of physical oceanography, experiments using these water bodies as a natural laboratory and interpreting their circulation and mixing processes using theoretical and semi-theoretical knowledge are of fundamental importance. Small-scale physical models may also be used together with analytical and numerical models. The book highlights the fact that research and theory are interactive, and the results provide the fundamentals for the development of the estuarine research.
1 Introduction to Estuary Studies
1(24)
1.1 Why to Study Estuaries?
1(3)
1.2 Origin and Geological Age
4(3)
1.3 Definition and Terminology
7(11)
1.4 Policy and Actions to Estuary Preservation
18(7)
References
20(5)
2 Circulation and Mixing in Estuaries
25(48)
2.1 Hydrologic Processes: Ocean-Drainage Basin-Estuary
25(8)
2.2 Temporal and Spatial Scales of Sea-Level Variations
33(10)
2.3 Dimensional Analysis Applied to Equations and Processes
43(1)
2.4 What Generates the Circulation and Mixing in the Estuary?
44(8)
2.5 Tidal Wave Propagation in an Estuary
52(9)
2.6 Non-dimensional Numbers
61(7)
2.7 Mixing and Entrainment
68(5)
References
69(4)
3 Estuary Classification
73(44)
3.1 Geomorphologic Types of Estuaries
75(5)
3.1.1 Coastal Plain
75(1)
3.1.2 Fjord
76(1)
3.1.3 Bar-Built (or Coastal Lagoons)
77(1)
3.1.4 Tectonic, Deltas and Rias
78(2)
3.2 Salinity Stratification
80(8)
3.2.1 Salt Wedge Estuary (Type A)
80(2)
3.2.2 Moderately or Partially Mixed (Type B)
82(1)
3.2.3 Vertically Well-Mixed (Types C and D)
83(5)
3.3 Classification Diagrams
88(17)
3.4 Estuarine Zone
105(1)
3.5 Coastal Lagoons
106(11)
References
112(5)
4 Physical Properties and Experiments in Estuaries
117(26)
4.1 Research Planning
117(5)
4.2 Current Measurements, Tide and Hydrographic Properties
122(12)
4.2.1 Current Velocity
122(4)
4.2.2 Tide
126(1)
4.2.3 Hydrographic Properties
127(7)
4.3 Density and Equations of State
134(9)
References
140(3)
5 Reduction and Analysis of Observational Data: Flux and Transport of Properties
143(42)
5.1 Decomposition of Velocity
143(4)
5.2 Vertical Velocity Profiles
147(8)
5.3 Temporal and Spatial Averages
155(5)
5.4 Reduction and Analysis of Temporal Data Series
160(7)
5.5 Isopleths Method and Mean Vertical Profiles
167(2)
5.6 Flux and Transport of Properties
169(5)
5.7 Advective Salt Transport Components
174(7)
5.8 Advective Concentration Transport
181(1)
5.9 Tidal Prism Determination
182(3)
References
182(3)
6 Mixing Processes in Estuaries: Simplifyed Methods
185(48)
6.1 Fundamental Concepts
186(8)
6.2 Tidal Prism
194(2)
6.3 Segmented Tidal Prism Model
196(22)
6.3.1 High Tide Fresh Water Balance
210(1)
6.3.2 Low Tide Fresh Water Balance
211(1)
6.3.3 Fresh Water Balance During the Tidal Cycle
211(7)
6.4 Concentration Estimates of a Conservative Pollutant
218(6)
6.5 Water Mass Exchange at the Estuary Mouth
224(4)
6.6 Mixing Diagrams
228(5)
References
231(2)
7 Hydrodynamic Formulation: Mass and Salt Conservation Equations
233(50)
7.1 State of a Volume Element
234(1)
7.2 Mass and Salt Conservation Equations
235(7)
7.3 Integral Formulas: Mass and Salt Conservation Equations
242(26)
7.3.1 Volume Integration
242(10)
7.3.2 Bi-Dimensional Formulation: Vertical Integration
252(6)
7.3.3 Bi-Dimensional Formulation: Lateral Integration
258(5)
7.3.4 One-Dimensional Formulation: Integration in an Area
263(5)
7.4 Simplified Forms of the Continuity Equation
268(2)
7.5 Application of the One-Dimensional Continuity Equation
270(2)
7.6 Application of the One-Dimensional Salt Conservation Equation
272(5)
7.7 Steady-State Concentration Distribution of a Non-conservative Substance
277(6)
References
281(2)
8 Hydrodynamic Formulation: Equations of Motion and Applications
283(44)
8.1 Equations of Motion
283(8)
8.2 Boundary and Integral Conditions
291(7)
8.3 Bi-Dimensional Formulations: Vertical and Lateral Integration
298(5)
8.3.1 Vertical Integration
298(3)
8.3.2 Cross-Section Integration
301(2)
8.4 One-Dimensional Formulation
303(5)
8.5 Simplifyed Formulation and Application
308(10)
8.5.1 Velocity Generate by the River Discharge
308(5)
8.5.2 Velocity Generate by the Wind Stress
313(5)
8.6 Shallow Water Tidal Current and Phase Velocity
318(3)
8.7 Periodic Stratification Tidal Generate: Potential Energy Anomaly
321(6)
References
324(3)
9 Circulation and Mixing in Steady-State Models: Salt Wedge Estuary
327(24)
9.1 Hypothesis and Theoretical Formulation
330(1)
9.2 Circulation and Salt-Wedge Intrusion
331(15)
9.2.1 The Upper Layer
331(4)
9.2.2 The Lower Layer (Salt-Wedge)
335(3)
9.2.3 Vertical Velocity Profile
338(1)
9.2.4 Salt-Wedge Intrusion Length
338(8)
9.3 Theory and Experiment
346(5)
References
348(3)
10 Circulation and Mixing in Steady-State Models: Well-Mixed Estuary
351(34)
10.1 Hydrodynamic Formulation and Hypothesys
351(4)
10.2 Solution with Maximum Bottom Friction
355(6)
10.3 Vertical Velocity Profile: Moderate Bottom Friction
361(3)
10.4 Theory and Observational Data
364(2)
10.5 Longitudinal Salinity Simulation
366(3)
10.6 Analytical Simulation
369(16)
10.6.1 Basic Equations: Upper and Lower Boundary Conditions and Integral Boundary Condition
369(2)
10.6.2 Barotropic Pressure Gradient, Wind Stress and Maximum Bottom Friction
371(3)
10.6.3 Barotropic Pressure Gradient, Wind Stress, River Discharge and Maximum Bottom Friction
374(2)
10.6.4 Barotropic Pressure Gradient, River Discharge, Wind and Moderate Bottom Friction
376(4)
10.6.5 Barotropic and Baroclinic Pressure Gradient, River Discharge, Wind Stress and Bottom Friction Proportional to the Square of the Velocity
380(1)
10.6.6 Vertical Salinity Profile
381(2)
References
383(2)
11 Circulation and Mixing in Steady-State Models: Partially Mixed Estuary
385(54)
11.1 Physical-Mathematical Formulation
387(6)
11.2 Hydrodynamic Solution: Maximum Bottom Friction
393(4)
11.3 Hydrodynamic Solution: Moderate Bottom Friction
397(4)
11.4 Theoretical Vertical Salinity Profile
401(4)
11.5 Theoretical and Experimental Velocity and Salinity Profiles
405(4)
11.5.1 Longitudinal and Vertical Velocity Profiles
406(1)
11.5.2 Vertical Salinity Profile
406(3)
11.5.3 Validation of Experimental Velocity and Salinity Vertical Profiles
409(1)
11.6 Hansen and Rattray's Similarity Solution
409(9)
11.7 Estuary Classification: Stratification-Circulation Diagram
418(3)
11.8 Hansen and Rattray's Velocity and Salinity Vertical Profiles: Results and Validation
421(4)
11.9 Salinity Intrusion
425(1)
11.10 Secondary Circulation
426(13)
References
436(3)
12 Numerical Hydrodynamic Modelling
439
12.1 Briefy Outline on Numerical Models
440(2)
12.2 The Finite Difference Method
442(7)
12.3 Explicit and Implicit Schemes
449(4)
12.4 The Volume Method of Finite Difference
453(3)
12.5 A Simple Unidimensional Numeric Model
456(6)
12.5.1 Explicit Solution
456(5)
12.5.2 Implicit Solution
461(1)
12.6 The Blumberg's Bi-dimensional Model
462(10)
12.7 Results on Numerical Modelling: Caravelas-Peruipe Rivers Estuarine System
472
References
480
Fernando Pinheiro Andutta is Research Fellow at the Griffith Climate Change Response Program GCCRP at Griffith University, Southport, Australia

Björn Kjerfve is Chancellor of the American University of Sharjah, UAE

Luiz Bruner de Miranda is an emeritus professor at the University of Sćo Paulo, Brazil

And 

Belmiro Mendes de Castro Filho is a professor at the University of Sćo Paulo, Brazil