Atjaunināt sīkdatņu piekrišanu

E-grāmata: Fundamentals of Gas Shale Reservoirs

Edited by
  • Formāts: EPUB+DRM
  • Izdošanas datums: 01-Jul-2015
  • Izdevniecība: John Wiley & Sons Inc
  • Valoda: eng
  • ISBN-13: 9781119039266
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 155,79 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: EPUB+DRM
  • Izdošanas datums: 01-Jul-2015
  • Izdevniecība: John Wiley & Sons Inc
  • Valoda: eng
  • ISBN-13: 9781119039266
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Provides comprehensive information about the key exploration, development and optimization concepts required for gas shale reservoirs

  • Includes statistics about gas shale resources and countries that have shale gas potential
  • Addresses the challenges that oil and gas industries may confront for gas shale reservoir exploration and development
  • Introduces petrophysical analysis, rock physics, geomechanics and passive seismic methods for gas shale plays
  • Details shale gas environmental issues and challenges, economic consideration for gas shale reservoirs
  • Includes case studies of major producing gas shale formations

Recenzijas

Comprehensive and up-to-date, Fundamentals of Gas Shale Reservoirs is an essential reference for anyone interested in gas shale reservoirs. It is also a must have text for students, of any discipline, studying non-conventional oil and gas resources and it is bound to become the 'gold standard' textbook in this field. In addition, this book is available in both print and e-book edition, making it easy to choose the format that best suits your needs.  (Tundraco, 1 October 2015)

 

Contributors xv
Preface xvii
1 Gas Shale: Global Significance, Distribution, and Challenges
1(20)
1.1 Introduction
1(1)
1.2 Shale Gas Overview
1(3)
1.2.1 Shale Gas Geology
2(1)
1.2.2 Characteristics of a Producing Shale Gas Play
3(1)
1.3 The Significance of Shale Gas
4(1)
1.4 Global Shale Gas Resources
5(2)
1.4.1 Sources of Information
5(1)
1.4.2 Resource Estimation Methodologies
5(2)
1.5 Global Resource Data
7(4)
1.5.1 China
7(1)
1.5.2 The United States
7(1)
1.5.3 Mexico
7(1)
1.5.4 Southern South America
7(1)
1.5.5 South Africa
8(1)
1.5.6 Australia
8(1)
1.5.7 Canada
8(1)
1.5.8 North Africa
8(1)
1.5.9 Poland
9(1)
1.5.10 France
9(1)
1.5.11 Russia
9(1)
1.5.12 Scandinavia
9(1)
1.5.13 Middle East
9(1)
1.5.14 India
9(1)
1.5.15 Pakistan
10(1)
1.5.16 Northwest Africa
10(1)
1.5.17 Eastern Europe (Outside of Poland)
10(1)
1.5.18 Germany and Surrounding Nations
10(1)
1.5.19 The United Kingdom
10(1)
1.5.20 Northern South America
11(1)
1.5.21 Turkey
11(1)
1.6 Data Assessment
11(2)
1.6.1 Distribution
11(1)
1.6.2 Basin Type
11(1)
1.6.3 Depositional Environment
12(1)
1.6.4 TOC Content
12(1)
1.6.5 Clay Content
13(1)
1.7 Industry Challenges
13(1)
1.7.1 Environmental Challenges
13(1)
1.7.2 Commercial/Economic
14(1)
1.8 Discussion
14(1)
1.9 Conclusions
15(6)
Appendix A.1 Global Shale Gas Resource Data
16(5)
2 Organic Matter-Rich Shale Depositional Environments
21(26)
2.1 Introduction
21(2)
2.2 Processes Behind the Deposition of Organic Matter-Rich Shale
23(2)
2.2.1 Processes Behind the Transport and Deposition of Mud
23(1)
2.2.2 Production, Destruction, and Dilution: The Many Roads to Black Shale
23(2)
2.3 Stratigraphic Distribution of Organic Matter-Rich Shales
25(2)
2.4 Geographic Distribution of Organic Matter-Rich Shales
27(7)
2.4.1 Background
27(3)
2.4.2 Controls on the Geographic Distribution of Black Shales
30(4)
2.5 Organic Matter-Rich Shale Depositional Environments
34(5)
2.5.1 Continental Depositional Environments
34(2)
2.5.2 Paralic Depositional Environments
36(1)
2.5.3 Shallow Marine Depositional Environments
37(1)
2.5.4 Deep Marine Depositional Environments
38(1)
2.6 Conclusion
39(8)
3 Geochemical Assessment of Unconventional Shale Gas Resource Systems
47(24)
3.1 Introduction
47(2)
3.2 Objective and Background
49(1)
3.3 Kerogen Quantity and Quality
49(2)
3.4 Sample Type and Quality
51(1)
3.5 Kerogen Type and Compositional Yields
52(2)
3.6 Thermal Maturity
54(1)
3.7 Organoporosity Development
55(2)
3.8 Gas Contents
57(1)
3.9 Expulsion--Retention of Petroleum
57(1)
3.10 Secondary (Petroleum) Cracking
58(1)
3.11 Upper Maturity Limit for Shale Gas
58(1)
3.12 Gas Composition and Carbon Isotopes
59(2)
3.13 Additional Geochemical Analyses for Shale Gas Resource System Evaluation
61(2)
3.14 Oil and Condensate with Shale Gas
63(1)
3.15 Major Shale Gas Resource Systems
64(1)
3.16 Conclusions
65(6)
4 Sequence Stratigraphy of Unconventional Resource Shales
71(18)
4.1 Introduction
71(1)
4.2 General Sequence Stratigraphic Model for Unconventional Resource Shales
71(1)
4.3 Ages of Sea-Level Cycles
72(1)
4.4 Water Depth of Mud Transport and Deposition
73(1)
4.5 Criteria to Identify Sequences and Systems Tracts
74(1)
4.6 Paleozoic Resource Shale Examples
74(6)
4.6.1 Barnett Shale (Devonian)
74(1)
4.6.2 Woodford Shale (Late Devonian--Early Mississippian)
74(4)
4.6.3 Marcellus Shale (Devonian)
78(1)
4.6.4 New Albany Shale (Upper Devonian--Lower Mississippian)
78(2)
4.7 Mesozoic Resource Shale Examples
80(3)
4.7.1 Montney Formation (Early Triassic)
80(1)
4.7.2 Haynesville/Bossier Shales (Late Jurassic)
80(1)
4.7.3 Eagle Ford Formation (Cretaceous)
80(2)
4.7.4 LaLuna Formation (Upper Cretaceous)
82(1)
4.8 Cenozoic Resource Shale Example
83(1)
4.9 Conclusions
84(1)
4.10 Applications
84(5)
5 Pore Geometry in Gas Shale Reservoirs
89(28)
5.1 Introduction
89(1)
5.1.1 Gas Shales and Their Challenges
89(1)
5.1.2 Pore Size Classification
90(1)
5.2 Samples Characteristics
90(1)
5.2.1 Sample Collection
90(1)
5.2.2 Mineral Composition
90(1)
5.3 Experimental Methodology
91(4)
5.3.1 Capillary Pressure Profile
91(1)
5.3.2 Nitrogen Adsorption (N2)
92(1)
5.3.3 Low-Field NMR
92(1)
5.3.4 Image Acquisition and Analysis
93(2)
5.4 Advantages and Disadvantages of Experimental PSD Methods
95(1)
5.5 Permeability Measurement
95(1)
5.6 Results
96(7)
5.6.1 Pore Size Distribution from MICP Experiments
96(2)
5.6.2 Pore Size Distribution from Nitrogen Adsorption Experiments
98(1)
5.6.3 NMR T2 Relaxation Time
98(2)
5.6.4 Scanning Electron Microscopy
100(1)
5.6.5 Focused Ion Beam/Scanning Electron Microscopy
100(2)
5.6.6 Capillary Pressure and Permeability
102(1)
5.7 Discussion
103(9)
5.7.1 Porosity and PSD Comparisons
103(1)
5.7.2 Interchanging MICP with NMR Data
103(4)
5.7.3 Pore-Body to Pore-Throat Size Ratio: Pore Geometry Complexity
107(1)
5.7.4 Pore Throat Size and Permeability
107(1)
5.7.5 Mineralogy
108(4)
5.8 Conclusions
112(5)
Appendix 5.A XRD Results
114(3)
6 Petrophysical Evaluation of Gas Shale Reservoirs
117(22)
6.1 Introduction
117(1)
6.2 Key Properties for Gas Shale Evaluation
117(4)
6.2.1 Pore System Characteristics
117(1)
6.2.2 Organic Matter Characteristics
118(1)
6.2.3 Permeability
118(1)
6.2.4 Gas Storage Capacity
119(1)
6.2.5 Shale Composition
120(1)
6.2.6 Geomechanical Properties
120(1)
6.3 Petrophysical Measurements of Gas Shale Reservoirs
121(4)
6.3.1 Pore Structure Evaluation Techniques
121(1)
6.3.2 Fluid Saturation Measurement
122(1)
6.3.3 Permeability Measurement
123(1)
6.3.4 Adsorbed Gas Measurement
124(1)
6.4 Well Log Analysis of Gas Shale Reservoirs
125(14)
6.4.1 Well Log Signatures of Gas Shale Formations
125(3)
6.4.2 Well Log Interpretation of Gas Shale Formations
128(11)
7 Pore Pressure Prediction for Shale Formations Using well Log Data
139(30)
7.1 Introduction
139(1)
7.1.1 Normal Pressure
139(1)
7.1.2 Overpressure
139(1)
7.2 Overpressure-Generating Mechanisms
140(6)
7.2.1 Loading Mechanisms
141(1)
7.2.2 Unloading Mechanisms (Fluid Expansion)
142(1)
7.2.3 World Examples of Overpressures
143(1)
7.2.4 Overpressure Indicators from Drilling Data
144(1)
7.2.5 Identification of Shale Intervals
144(2)
7.3 Overpressure Estimation Methods
146(5)
7.3.1 Overview of the Compaction Theory
146(1)
7.3.2 Eaton's Method
147(2)
7.3.3 Effective Stress Method
149(1)
7.3.4 Bowers's Method
150(1)
7.4 The Role of Tectonic Activities on Pore Pressure In Shales
151(9)
7.4.1 Geology of the Study Area
151(1)
7.4.2 Stress Field in the Perth Basin
152(2)
7.4.3 Pore Pressure in Tectonically Active Regions (Uplifted Areas)
154(1)
7.4.4 Pore Pressure in Tectonically Stable Regions
154(2)
7.4.5 Origins of Overpressure in Kockatea Shale
156(4)
7.5 Discussion
160(5)
7.5.1 Significance of Pore Pressure Study
163(1)
7.5.2 Overpressure Detection and Estimation
163(1)
7.5.3 Pore Pressure and Compressional Tectonics
163(1)
7.5.4 Overpressure-Generating Mechanisms
164(1)
7.5.5 Overpressure Results Verifications
164(1)
7.6 Conclusions
165(4)
8 Geomechanics of Gas Shales
169(22)
8.1 Introduction
169(1)
8.2 Mechanical Properties of Gas Shale Reservoirs
170(5)
8.2.1 Gas Shale Reservoir Properties under Triaxial Loading
170(1)
8.2.2 True-Triaxial Tests
171(1)
8.2.3 Gas Shale Reservoir Properties under Ultrasonic Tests
172(1)
8.2.4 Nanoindentation Tests on Gas Shale Plays
173(1)
8.2.5 Scratch Tests
174(1)
8.3 Anisotropy
175(1)
8.3.1 Anisotropy in Gas Shale Reservoirs
175(1)
8.4 Wellbore Instability in Gas Shale Reservoirs
176(15)
8.4.1 Structurally Controlled Instability
177(1)
8.4.2 Instability Due to Directional Dependency of Geomechanical Parameters
178(6)
8.4.3 Time-Dependent Instability
184(7)
9 Rock Physics Analysis of Shale Reservoirs
191(16)
9.1 Introduction
191(1)
9.2 Laboratory Measurements on Shales: Available Datasets
192(1)
9.3 Organic Matter Effects on Elastic Properties
192(3)
9.4 Partial Saturation Effects
195(2)
9.5 Maturity Effects
197(4)
9.6 Seismic Response of ORSs
201(2)
9.7 Conclusions
203(4)
10 Passive Seismic Methods for Unconventional Resource Development
207(38)
10.1 Introduction
207(2)
10.2 Geomechanics and Natural Fracture Basics for Application to Hydraulic Fracturing
209(4)
10.2.1 Basics of Earth Stress and Strain
209(2)
10.2.2 Natural Fracture Basics and Interaction with Hydraulic Fractures
211(2)
10.3 Seismic Phenomena
213(3)
10.3.1 MEQs and Their Magnitudes
213(1)
10.3.2 Earthquake Focal Mechanisms
213(3)
10.3.3 Other Types of Seismic Activity Produced by Hydraulic Fracturing
216(1)
10.4 Microseismic Downhole Monitoring
216(6)
10.4.1 Downhole Monitoring Methodology
216(4)
10.4.2 Advantages and Disadvantages of Downhole Monitoring
220(2)
10.5 Monitoring Passive Seismic Emissions with Surface and Shallow Buried Arrays
222(13)
10.5.1 Recording
222(1)
10.5.2 Seismic Emission Tomography
223(6)
10.5.3 MEQ Methods
229(1)
10.5.4 Imaging Cumulative Seismic Activity
230(2)
10.5.5 Direct Imaging of Fracture Networks
232(1)
10.5.6 Comparison of Downhole Hypocenters and Fracture Images
232(1)
10.5.7 Summary
233(2)
10.6 Integrating, Interpreting, and Using Passive Seismic Data
235(6)
10.6.1 General Considerations
235(1)
10.6.2 Interpreting Reservoir Stress from Focal Mechanisms
236(4)
10.6.3 Fracture Width, Height, SRV, and Tributary Drainage Volume
240(1)
10.6.4 Using Passive Seismic Results for Frac, Well-Test, and Reservoir Simulation
240(1)
10.7 Conclusions
241(4)
11 Gas Transport Processes in Shale
245(22)
11.1 Introduction
245(2)
11.2 Detection of Nanopores in Shale Samples
247(1)
11.3 Gas Flow in Micropores and Nanopores
248(3)
11.4 Gas Flow in a Network of Pores in Shale
251(1)
11.5 Gas Sorption in Shale
252(1)
11.6 Diffusion in Bulk Kerogen
253(2)
11.7 Measurement of Gas Molecular Diffusion into Kerogen
255(1)
11.8 Pulse-Decay Permeability Measurement Test
256(4)
11.8.1 Pulse-Decay Pressure Analysis
257(2)
11.8.2 Estimation of Permeability Parameters with the Pulse-Decay Experiment
259(1)
11.9 Crushed Sample Test
260(2)
11.9.1 Porosity Measurement
260(1)
11.9.2 Crushed Sample Pressure Analysis for Permeability Measurement
261(1)
11.9.3 Crushed Sample Permeability Estimation with Early-Time Pressure Data
262(1)
11.9.4 Crushed Sample Permeability Estimation with Late-Time Pressure Data
262(1)
11.10 Canister Desorption Test
262(5)
11.10.1 Permeability Estimation with Early Time Cumulative Desorbed Gas Data
263(1)
11.10.2 Permeability Estimation with Late-Time Cumulative Desorbed Gas Data
264(3)
12 A Review of the Critical Issues Surrounding the Simulation of Transport and Storage in Shale Reservoirs
267(16)
12.1 Introduction
267(1)
12.2 Microgeometry of Organic-Rich Shale Reservoirs
268(1)
12.3 Gas Storage Mechanisms
269(1)
12.4 Fluid Transport
270(3)
12.5 Capillary Pressure, Relaxation to Equilibrium State, and Deposition of Stimulation Water
273(1)
12.6 Characterization of Fluid Behavior and Equations of State Valid for Nanoporous Media
274(3)
12.6.1 Viscosity Corrections
276(1)
12.6.2 Corrections for Interfacial Tension
277(1)
12.7 Upscaling Heterogeneous Shale-Gas Reservoirs into Large Homogenized Simulation Grid Blocks
277(3)
12.7.1 Upscaling Fine Continuum Model of Shale to Lumped-Parameter Leaky Tank Model of Shale
278(1)
12.7.2 Upscaling Finely Detailed Continuum Model of Shale to Coarse Continuum Model of Shale
279(1)
12.8 Final Remarks
280(3)
13 Performance Analysis of Unconventional Shale Reservoirs
283(18)
13.1 Introduction
283(1)
13.2 Shale Reservoir Production
283(1)
13.3 Flow Rate Decline Analysis
284(4)
13.3.1 Decline Curve Analysis in Unconventional Reservoirs
285(1)
13.3.2 Flow Rate Transient Analysis (RTA) and its Relation to Rate Decline Analysis
286(1)
13.3.3 Field Applications
287(1)
13.4 Flow Rate and Pressure Transient Analysis in Unconventional Reservoirs
288(4)
13.4.1 Bilinear Flow Regime in Multistage Hydraulic Fracturing
288(1)
13.4.2 Linear Flow Analysis for Reservoir Permeability
289(1)
13.4.3 Field Applications
290(1)
13.4.4 Type-Curve Matching
290(2)
13.5 Reservoir Modeling and Simulation
292(3)
13.5.1 History Matching and Forecasting
292(1)
13.5.2 Dual-Porosity Single-Phase Modeling
293(1)
13.5.3 Dual-Porosity Multicomponent Gas Modeling
294(1)
13.6 Specialty Short-Term Tests
295(2)
13.6.1 Mini-DST
295(1)
13.6.2 Mini-Frac Test
296(1)
13.7 Enhanced Oil Recovery
297(1)
13.8 Conclusion
298(3)
14 Resource Estimation for Shale Gas Reservoirs
301(24)
14.1 Introduction
301(8)
14.1.1 Unique Properties of Shale
301(1)
14.1.2 Petroleum Resources Management System (PRMS)
301(1)
14.1.3 Energy Information Administration's Classification System
301(1)
14.1.4 Reserves Estimate Methodology for Unconventional Gas Reservoirs
302(1)
14.1.5 Monte Carlo Probabilistic Approach
302(1)
14.1.6 Analytical Models
303(1)
14.1.7 Economic Analysis
303(1)
14.1.8 Region-Level World Shale Gas Resource Assessments
304(1)
14.1.9 Shale Gas OGIP Assessment in North America
305(1)
14.1.10 Recent Shale Gas Production and Activity Trends
306(2)
14.1.11 Drilling, Stimulation, and Completion Methods in Shale Gas Reservoirs
308(1)
14.2 Methodology
309(1)
14.3 Resource Evaluation of Shale Gas Plays
310(10)
14.3.1 Reservoir Model
310(1)
14.3.2 Well Spacing Determination
310(1)
14.3.3 Reservoir Parameters Sensitivity Analysis
311(1)
14.3.4 Reservoir Parameters
312(1)
14.3.5 Model Verification
312(1)
14.3.6 Resource Assessment
313(5)
14.3.7 Reserve Evaluation
318(2)
14.4 Discussion
320(5)
15 Molecular Simulation of Gas Adsorption in Minerals and Coal: Implications for Gas Occurrence in Shale Gas Reservoirs
325(16)
15.1 Introduction
325(2)
15.1.1 Molecular Dynamics Simulation
325(1)
15.1.2 Major Challenges in Shale Gas Research
326(1)
15.1.3 MS of Gas Adsorption
326(1)
15.1.4 Methodology and Workflow of Molecular Simulation
327(1)
15.1.5 Simulation Algorithms and Software
327(1)
15.2 MS of Gas Adsorption on Minerals
327(10)
15.2.1 MD Simulation of Gas Adsorption on Quartz
328(2)
15.2.2 Molecular Dynamic Simulation of Gas Adsorption on Wyoming-Type Montmorillonite
330(2)
15.2.3 MD Simulation of Gas Adsorption on Zeolite
332(2)
15.2.4 MD Simulation of Gas Adsorption on Coal
334(3)
15.3 Conclusions
337(4)
16 Wettability of Gas Shale Reservoirs
341(20)
16.1 Introduction
341(1)
16.2 Wettability
341(1)
16.3 Imbibition in Gas Shales
342(1)
16.4 Factors Influencing Water Imbibition in Shales
343(9)
16.4.1 Sample Expansion
343(3)
16.4.2 Depositional Lamination
346(1)
16.4.3 Chemical Osmosis
346(2)
16.4.4 Water Film and Salt Crystals
348(1)
16.4.5 Water Adsorption (Clay Swelling)
348(1)
16.4.6 Connectivity of Hydrophobic and Hydrophilic Pore Networks
349(2)
16.4.7 Effect of Polymer and Surfactant
351(1)
16.5 Quantitative Interpretation of Imbibition Data
352(2)
16.5.1 Scaling Imbibition Data
352(1)
16.5.2 Modeling Imbibition Data
352(2)
16.6 Estimation of Brine Imbibition at the Field Scale
354(2)
16.7 Initial Water Saturation in Gas Shales
356(1)
16.8 Conclusions
356(5)
17 Gas Shale Challenges Over The Asset Life Cycle
361(20)
17.1 Introduction
361(1)
17.2 The Asset Life Cycle
361(1)
17.2.1 Exploration Phase Objectives---Recommended Practices
361(1)
17.2.2 Appraisal Phase Objectives---Recommended Practices
362(1)
17.2.3 Development Phase Objectives---Recommended Practices
362(1)
17.2.4 Production Phase Objectives---Recommended Practices
362(1)
17.2.5 Rejuvenation Phase Objectives---Recommended Practices
362(1)
17.3 Exploration Phase Discussion
362(3)
17.3.1 Screening Study---Current Practice
362(1)
17.3.2 Screening Study Recommended Practices
363(1)
17.3.3 Reservoir Characterization---Current Practice
363(1)
17.3.4 Reservoir Characterization---Recommended Practices
363(2)
17.3.5 Determining Initial Economic Value and Reservoir Potential
365(1)
17.4 Appraisal Phase Discussion
365(2)
17.4.1 Drill Appraisal Wells---Current Practice
365(1)
17.4.2 Drill Appraisal Wells---Recommended Practices
365(1)
17.4.3 Build Reservoir Models for Simulation---Current Practice
365(1)
17.4.4 Build Reservoir Models for Simulation---Recommended Practices
365(1)
17.4.5 Generate a Field Development Plan---Current Practice
366(1)
17.4.6 Generate a Field Development Plan---Recommended Practices
366(1)
17.4.7 Validate Economics of the Play or Pilot Project
366(1)
17.5 Development Phase Discussion
367(8)
17.5.1 Implement the Field Development Plan
367(1)
17.5.2 Surface Facilities
367(1)
17.5.3 Design Wells and Optimize Drilling Costs---Current Practice
367(1)
17.5.4 Design Wells and Optimize Drilling Costs---Recommended Practice
368(1)
17.5.5 Refine and Optimize Hydraulic Fracturing and Wellbore Completion Design---Current Practices (Characterize the Lateral)
369(1)
17.5.6 Current Hydraulic Fracturing Practices
369(1)
17.5.7 Hydraulic Fracturing---Recommended Practices
370(2)
17.5.8 Characterize the Lateral
372(1)
17.5.9 Current Wellbore Completion Practice
373(1)
17.5.10 Wellbore Completion---Recommended Practices
373(2)
17.5.11 Drilling Considerations for Completion Methods
375(1)
17.5.12 Fracturing Considerations for Completion Method
375(1)
17.6 Production Phase Discussion
375(1)
17.6.1 Monitor and Optimize Producing Rates---Current Practice
375(1)
17.6.2 Monitor and Optimize Producing Rates---Recommended Practices
375(1)
17.6.3 Manage the Water Cycle---Recommended Practices
376(1)
17.6.4 Preventing Corrosion, Scaling, and Bacterial Contamination in Wells and Facilities
376(1)
17.6.5 Protecting the Environment
376(1)
17.7 Rejuvenation Phase Discussion
376(1)
17.8 Conclusions---Recommended Practices
377(4)
18 Gas Shale Environmental Issues and Challenges
381(16)
18.1 Overview
381(1)
18.2 Water Use
381(1)
18.3 The Disposal and Reuse of Fracking Wastewater
382(2)
18.4 Groundwater Contamination
384(2)
18.5 Methane Emissions
386(1)
18.6 Other Air Emissions
387(1)
18.7 Social Impacts on Shale Gas Communities
388(1)
18.8 Induced Seismicity: Wastewater Injection and Earthquakes
388(1)
18.9 Regulatory Developments
389(1)
18.10 Disclosure of Fracking Chemicals
389(1)
18.11 At the Federal Government Level
390(1)
18.12 Conclusion
391(6)
Index 397
Reza Rezaee is a Professor in the Department of Petroleum Engineering at Curtin University, Australia. He is the winner of Australian Gas innovation research 2012 award for introducing a new method to enhance natural gas production from tight gas reservoirs. He has published more than 120 peer-reviewed journal and conference papers and is the author of 3 books. His current research has been focused on integrated reservoir characterization, formation evaluation and petrophysics. He is a former Research Fellow, School of Geology and Geophysics, Oklahoma University.