Atjaunināt sīkdatņu piekrišanu

E-grāmata: Fundamentals of Infinite Dimensional Representation Theory

  • Formāts: 448 pages
  • Izdošanas datums: 03-Oct-2018
  • Izdevniecība: Chapman & Hall/CRC
  • ISBN-13: 9781351990219
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 78,89 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 448 pages
  • Izdošanas datums: 03-Oct-2018
  • Izdevniecība: Chapman & Hall/CRC
  • ISBN-13: 9781351990219
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Fabec (mathematics, Louisiana State U.) offers somewhat discrete chapters that allow the knowledgeable mathematician to choose from a variety of topics, including Borel spaces and selection theorems, Mackey's theory of induction, left Hilbert algebras, and dual topologies, and pursue them independently. In so doing, he explores representations of groups and algebras concurrently, including chapters on C* and von Neumann algebras. Annotation c. Book News, Inc., Portland, OR (booknews.com)

Infinite dimensional representation theory blossomed in the latter half of the twentieth century, developing in part with quantum mechanics and becoming one of the mainstays of modern mathematics. Fundamentals of Infinite Dimensional Representation Theory provides an accessible account of the topics in analytic group representation theory and operator algebras from which much of the subject has evolved. It presents new and old results in a coherent and natural manner and studies a number of tools useful in various areas of this diversely applied subject.

From Borel spaces and selection theorems to Mackey's theory of induction, measures on homogeneous spaces, and the theory of left Hilbert algebras, the author's self-contained treatment allows readers to choose from a wide variety of topics and pursue them independently according to their needs. Beyond serving as both a general reference and as a text for those requiring a background in group-operator algebra representation theory, for careful readers, this monograph helps reveal not only the subject's utility, but also its inherent beauty.
Borel Spaces and Selection Theorems
1(44)
Borel Structures on Polish Spaces
1(3)
Analytic Sets, Analytic Spaces and Kuratowski's Theorem
4(4)
Measures and Selection Theorems on Polish Spaces
8(5)
Uniformization of Borel Subsets with σ-Compact Sections
13(6)
Borel Sets and the Baire Property
19(1)
Measure Algebras and Their Homomorphisms
20(5)
The Weak Borel Structure on the Space of Finite Measures
25(3)
Disintegration on Standard Borel Spaces
28(2)
Standard Borel Structures on Function Spaces
30(6)
Borel Fields of Functions
36(9)
Preliminaries on C* Algebras
45(36)
Basic Definitions and the Gelfand Theorem
45(9)
Approximate Units on a C* Algebra
54(4)
Representations of Commutative C* Algebras
58(5)
The Spectral Theorem for Self Adjoint Operators
63(6)
Positive Functionals and the GNS Constructions
69(4)
States
73(3)
The Universal Enveloping C* algebra
76(5)
Type One Von Neumann Algebras
81(54)
Structure of Projection Valued Measures
81(4)
Some Topologies on the Space of Bounded Operators
85(7)
A predual of B(H)
92(3)
Trace Class Operators
95(7)
The Kaplansky Density Theorem
102(2)
Boolean Algebras of Projections
104(1)
The Double Commutant Theorem
105(4)
Commutative von Neumann Algebras
109(1)
Hilbert Bundles and Direct Integrals
110(6)
Borel Fields of von Neumann Algebras
116(5)
Similar Projections in a von Neumann Algebra
121(3)
Abelian Subalgebras and Type I von Neumann Algebras
124(3)
Homogeneous Projections of Degree n
127(2)
Structure Theorem for General Type I Algebras
129(1)
Structure Theorem for Type I Algebras --- Separable Case
129(3)
Primary Representations of a C* Algebra
132(3)
Groups and Group Actions
135(58)
Polish Groups
135(3)
Haar Integrals on Locally Compact Groups
138(8)
Standard Borel Groups with Quasi-invariant Measure
146(2)
Standard Borel G Spaces
148(3)
A Universal Borel G Space
151(2)
Cocycles on Borel G Spaces
153(2)
Unitary Representations of Topological Groups
155(3)
The Convolution Measure Algebra
158(2)
The L1 Algebra
160(8)
Positive Definite Functions
168(6)
Borel Structures on Spaces of Representations
174(3)
Direct Integrals for Representations
177(10)
Type I Measures on G
187(6)
Induced Actions and Representations
193(34)
The Point Transformation Group
194(1)
Unitary Extensions of G Spaces and Induced Representations
195(5)
Inducing in Stages
200(1)
Induced Group Actions
201(2)
Inducing Group Actions in Stages
203(2)
Mackey's Imprimitivity Theorem
205(2)
The Subgroup Theorem
207(5)
Multiplier Representations
212(2)
Extensions of Representations to Multiplier Representations
214(1)
The Action of a Group on the Dual of a Normal Subgroup
215(1)
Restrictions of Representations to Normal Subgroups
216(6)
Transitive Quasi-orbits and Mackey's Subgroup Method
222(5)
Dual Topologies
227(38)
The Primitive Ideal Space
227(3)
The Hull-Kernel Topology
230(5)
Finite Dimensional Representations
235(1)
Dual Pairings
236(2)
Weak Containment and Hull-Kernel Closures
238(4)
The Simple-Strong Topology on Hom (A, B(H))
242(2)
The Dual Space Topology on A
244(3)
Ergodic Measures on Hom(A,B(H))
247(4)
Orbit Spaces of a Polish Action
251(2)
Condition C and the Orbit Space
253(6)
Condition D and the Orbit Space
259(3)
The Equivalence of Smooth and Type I
262(1)
Representations of Separable Type I C* Algebras
263(2)
Left Hilbert Algebras
265(98)
Hilbert-Schmidt Operators
265(4)
Tensor Products
269(2)
Left Hilbert Algebras and Examples
271(3)
Properties of Left Hilbert Algebras
274(3)
The Right Hilbert Algebra
277(2)
Operators Affiliated with a von Neumann Algebra
279(2)
The Resolvent of the Modular Function δ
281(3)
A Conjugate Isomorphism of A and A'
284(5)
A' is a Left Hilbert Algebra
289(2)
The Double Left Hilbert Algebra
291(1)
Achieved Left Hilbert Algebras
292(1)
The Subalgebra &peound; (A)0
292(4)
Tomita Algebras
296(7)
The Maximum Tomita Subalgebra
303(1)
Continuous Linear Functionals on Various Topologies
303(5)
Positive Linear Mappings Between von Neumann Algebras
308(4)
Weights on a von Neumann Algebra
312(4)
The GNS Theorem for Normal Semifinite Weights
316(7)
The Natural Weight on &peound;(A)
323(6)
Normality of the Natural Weight
329(8)
Traces on a C* Algebra
337(1)
Unimodular Left Hilbert Algebras
338(2)
Bitraces
340(7)
Disintegration of Positive Linear Functionals
347(2)
Traces on Type I von Neumann Algebras
349(5)
Bitraces on Separable Type I C* Algebras
354(6)
The Plancherel Theorem
360(3)
The Fourier-Stieltjes Algebra
363(36)
Introduction
363(1)
The Hahn Decomposition
364(2)
A Predual of B (G)
366(1)
The Dual of the C* Algebra of Compact Operators
367(2)
Polar Decompositions
369(8)
The Arens' Construction
377(1)
Bidual of a C* Algebra
378(3)
Some Properties of the Universal Enveloping Representation
381(5)
Imbedding G into W* (G)
386(1)
Invariant Sets in B(G)
387(1)
The Support of a Representation
388(2)
The Norm on B(G)
390(4)
Quasi-equivalence of Representations
394(1)
The Fourier Algebra
395(4)
Symbols 399(2)
Bibliography 401(20)
Index 421


Fabec, Raymond C.