Atjaunināt sīkdatņu piekrišanu

E-grāmata: Fundamentals of Liquid Crystal Devices 2e 2nd Edition [Wiley Online]

(HRL Laboratories, Malibu, California), (Kent State University, Ohio)
  • Formāts: 592 pages
  • Sērija : Wiley Series in Display Technology
  • Izdošanas datums: 28-Nov-2014
  • Izdevniecība: John Wiley & Sons Inc
  • ISBN-10: 111875199X
  • ISBN-13: 9781118751992
Citas grāmatas par šo tēmu:
  • Wiley Online
  • Cena: 136,48 €*
  • * this price gives unlimited concurrent access for unlimited time
  • Formāts: 592 pages
  • Sērija : Wiley Series in Display Technology
  • Izdošanas datums: 28-Nov-2014
  • Izdevniecība: John Wiley & Sons Inc
  • ISBN-10: 111875199X
  • ISBN-13: 9781118751992
Citas grāmatas par šo tēmu:
"Explains the link between fundamental scientific principles to the technological state-of-the-art"--

"Revised throughout to cover the latest developments in the fast moving area of display technology, this 2nd edition of Fundamentals of Liquid Crystal Devices, will continue to be a valuable resource for those wishing to understand the operation of liquid crystal displays. Significant updates include new material on display components, 3D LCDs and blue-phase displays which is one of the most promising new technologies within the field of displays and it is expected that this new LC-technology will reducethe response time and the number of optical components of LC-modules. Prof. Yang is a pioneer of blue-phase display technology and Prof. Wu has made significant contributions to the continuing advancement of the technology, and so are both undeniably well placed to offer an overview of this state-of-the-art technology"--

Revised throughout to cover the latest developments in the fast moving area of display technology, this 2nd edition of Fundamentals of Liquid Crystal Devices, will continue to be a valuable resource for those wishing to understand the operation of liquid crystal displays. Significant updates include new material on display components, 3D LCDs and blue-phase displays which is one of the most promising new technologies within the field of displays and it is expected that this new LC-technology will reduce the response time and the number of optical components of LC-modules. Prof. Yang is a pioneer of blue-phase display technology and Prof. Wu has made significant contributions to the continuing advancement of the technology, and so are both undeniably well placed to offer an overview of this state-of-the-art technology.

Series Editor's Foreword xiii
Preface to the First Edition xv
Preface to the Second Edition xvii
1 Liquid Crystal Physics 1(50)
1.1 Introduction
1(4)
1.2 Thermodynamics and Statistical Physics
5(5)
1.2.1 Thermodynamic laws
5(1)
1.2.2 Boltzmann Distribution
6(1)
1.2.3 Thermodynamic quantities
7(2)
1.2.4 Criteria for thermodynamical equilibrium
9(1)
1.3 Orientational Order
10(11)
1.3.1 Orientational order parameter
11(2)
1.3.2 Landau-de Gennes theory of orientational order in nematic phase
13(5)
1.3.3 Maier-Saupe theory
18(3)
1.4 Elastic Properties of Liquid Crystals
21(6)
1.4.1 Elastic properties of nematic liquid crystals
21(3)
1.4.2 Elastic properties of cholesteric liquid crystals
24(2)
1.4.3 Elastic properties of smectic liquid crystals
26(1)
1.5 Response of Liquid Crystals to Electromagnetic Fields
27(1)
1.5.1 Magnetic susceptibility
27(11)
1.5.2 Dielectric permittivity and refractive index
29(9)
1.6 Anchoring Effects of Nematic Liquid Crystal at Surfaces
38(2)
1.6.1 Anchoring energy
38(1)
1.6.2 Alignment layers
39(1)
1.7 Liquid crystal director elastic deformation
40(8)
1.7.1 Elastic deformation and disclination
40(2)
1.7.2 Escape of liquid crystal director in disclinations
42(6)
Homework Problems
48(1)
References
49(2)
2 Propagation of Light in Anisotropic Optical Media 51(36)
2.1 Electromagnetic Wave
51(3)
2.2 Polarization
54(5)
2.2.1 Monochromatic plane waves and their polarization states
54(1)
2.2.2 Linear polarization state
55(1)
2.2.3 Circular polarization states
55(1)
2.2.4 Elliptical polarization state
56(3)
2.3 Propagation of Light in Uniform Anisotropic Optical Media
59(13)
2.3.1 Eigenmodes
60(5)
2.3.2 Orthogonality of eigenmodes
65(1)
2.3.3 Energy flux
66(1)
2.3.4 Special cases
67(2)
2.3.5 Polarizers
69(3)
2.4 Propagation of Light in Cholesteric Liquid Crystals
72(13)
2.4.1 Eigenmodes
72(9)
2.4.2 Reflection of cholesteric liquid crystals
81(3)
2.4.3 Lasing in cholesteric liquid crystals
84(1)
Homework Problems
85(1)
References
86(1)
3 Optical Modeling Methods 87(40)
3.1 Jones Matrix Method
87(11)
3.1.1 Jones vector
87(1)
3.1.2 Jones matrix
88(3)
3.1.3 Jones matrix of non-uniform birefringent film
91(1)
3.1.4 Optical properties of twisted nematic
92(6)
3.2 Mueller Matrix Method
98(15)
3.2.1 Partially polarized and unpolarized light
98(2)
3.2.2 Measurement of the Stokes parameters
100(2)
3.2.3 The Mueller matrix
102(2)
3.2.4 Poincare sphere
104(2)
3.2.5 Evolution of the polarization states on the Poincare sphere
106(4)
3.2.6 Mueller matrix of twisted nematic liquid crystals
110(2)
3.2.7 Mueller matrix of non-uniform birefringence film
112(1)
3.3 Berreman 4 x 4 Method
113(11)
Homework Problems
124(1)
References
125(2)
4 Effects of Electric Field on Liquid Crystals 127(22)
4.1 Dielectric Interaction
127(5)
4.1.1 Reorientation under dielectric interaction
128(1)
4.1.2 Field-induced orientational order
129(3)
4.2 Flexoelectric Effect
132(6)
4.2.1 Flexoelectric effect in nematic liquid crystals
132(4)
4.2.2 Flexoelectric effect in cholesteric liquid crystals
136(2)
4.3 Ferroelectric Liquid Crystal
138(8)
4.3.1 Symmetry and polarization
138(2)
4.3.2 Tilt angle and polarization
140(1)
4.3.3 Surface stabilized ferroelectric liquid crystals
141(3)
4.3.4 Electroclinic effect in chiral smectic liquid crystal
144(2)
Homework Problems
146(1)
References
147(2)
5 Freedericksz Transition 149(42)
5.1 Calculus of Variation
149(4)
5.1.1 One dimension and one variable
150(3)
5.1.2 One dimension and multiple variables
153(1)
5.1.3 Three dimensions
153(1)
5.2 Freedericksz Transition: Statics
153(13)
5.2.1 Splay geometry
154(4)
5.2.2 Bend geometry
158(2)
5.2.3 Twist geometry
160(1)
5.2.4 Twisted nematic cell
161(3)
5.2.5 Splay geometry with weak anchoring
164(1)
5.2.6 Splay geometry with pretilt angle
165(1)
5.3 Measurement of Anchoring Strength
166(5)
5.3.1 Polar anchoring strength
167(2)
5.3.2 Azimuthal anchoring strength
169(2)
5.4 Measurement of Pretilt Angle
171(4)
5.5 Freedericksz Transition: Dynamics
175(12)
5.5.1 Dynamics of Freedericksz transition in twist geometry
175(1)
5.5.2 Hydrodynamics
176(6)
5.5.3 Backflow
182(5)
Homework Problems
187(1)
References
188(3)
6 Liquid Crystal Materials 191(22)
6.1 Introduction
191(1)
6.2 Refractive Indices
192(9)
6.2.1 Extended Cauchy equations
192(1)
6.2.2 Three-band model
193(2)
6.2.3 Temperature effect
195(3)
6.2.4 Temperature gradient
198(1)
6.2.5 Molecular polarizabilities
199(2)
6.3 Dielectric Constants
201(3)
6.3.1 Positive Ae liquid crystals for AMLCD
202(1)
6.3.2 Negative De liquid crystals
202(1)
6.3.3 Dual-frequency liquid crystals
203(1)
6.4 Rotational Viscosity
204(1)
6.5 Elastic Constants
204(1)
6.6 Figure-of-Merit (FoM)
205(1)
6.7 Index Matching between Liquid Crystals and Polymers
206(4)
6.7.1 Refractive index of polymers
206(2)
6.7.2 Matching refractive index
208(2)
Homework problems
210(1)
References
210(3)
7 Modeling Liquid Crystal Director Configuration 213(22)
7.1 Electric Energy of Liquid Crystals
213(5)
7.1.1 Constant charge
214(1)
7.1.2 Constant voltage
215(3)
7.1.3 Constant electric field
218(1)
7.2 Modeling Electric Field
218(3)
7.3 Simulation of Liquid Crystal Director Configuration
221(11)
7.3.1 Angle representation
221(4)
7.3.2 Vector representation
225(3)
7.3.3 Tensor representation
228(4)
Homework Problems
232(1)
References
232(3)
8 Transmissive Liquid Crystal Displays 235(50)
8.1 Introduction
235(1)
8.2 Twisted Nematic (TN) Cells
236(5)
8.2.1 Voltage-dependent transmittance
237(1)
8.2.2 Film-compensated TN cells
238(3)
8.2.3 Viewing angle
241(1)
8.3 In-Plane Switching Mode
241(22)
8.3.1 Voltage-dependent transmittance
242(1)
8.3.2 Response time
243(3)
8.3.3 Viewing angle
246(1)
8.3.4 Classification of compensation films
246(1)
8.3.5 Phase retardation of uniaxial media at oblique angles
246(3)
8.3.6 Poincare sphere representation
249(1)
8.3.7 Light leakage of crossed polarizers at oblique view
250(4)
8.3.8 IPS with a positive a film and a positive c film
254(5)
8.3.9 IPS with positive and negative a films
259(4)
8.3.10 Color shift
263(1)
8.4 Vertical Alignment Mode
263(3)
8.4.1 Voltage-dependent transmittance
263(1)
8.4.2 Optical response time
264(1)
8.4.3 Overdrive and undershoot voltage method
265(1)
8.5 Multi-Domain Vertical Alignment Cells
266(11)
8.5.1 MVA with a positive a film and a negative c film
269(4)
8.5.2 MVA with a positive a, a negative a, and a negative c film
273(4)
8.6 Optically Compensated Bend Cell
277(4)
8.6.1 Voltage-dependent transmittance
278(1)
8.6.2 Compensation films for OCB
279(2)
Homework Problems
281(2)
References
283(2)
9 Reflective and Transflective Liquid Crystal Displays 285(36)
9.1 Introduction
285(1)
9.2 Reflective Liquid Crystal Displays
286(4)
9.2.1 Film-compensated homogeneous cell
287(2)
9.2.2 Mixed-mode twisted nematic (MTN) cells
289(1)
9.3 Transflector
290(3)
9.3.1 Openings-on-metal transflector
290(1)
9.3.2 Half-mirror metal transflector
291(1)
9.3.3 Multilayer dielectric film transflector
292(1)
9.3.4 Orthogonal polarization transflectors
292(1)
9.4 Classification of Transflective LCDs
293(19)
9.4.1 Absorption-type transflective LCDs
294(2)
9.4.2 Scattering-type transflective LCDs
296(2)
9.4.3 Scattering and absorption type transflective LCDs
298(2)
9.4.4 Reflection-type transflective LCDs
300(2)
9.4.5 Phase retardation type
302(10)
9.5 Dual-Cell-Gap Transflective LCDs
312(2)
9.6 Single-Cell-Gap Transflective LCDs
314(1)
9.7 Performance of Transflective LCDs
314(2)
9.7.1 Color balance
314(1)
9.7.2 Image brightness
315(1)
9.7.3 Viewing angle
315(1)
Homework Problems
316(1)
References
316(5)
10 Liquid Crystal Display Matrices, Drive Schemes and Bistable Displays 321(42)
10.1 Segmented Displays
321(1)
10.2 Passive Matrix Displays and Drive Scheme
322(4)
10.3 Active Matrix Displays
326(4)
10.3.1 TFT structure
328(1)
10.3.2 TFT operation principles
329(1)
10.4 Bistable Ferroelectric LCD and Drive Scheme
330(2)
10.5 Bistable Nematic Displays
332(10)
10.5.1 Introduction
332(1)
10.5.2 Twisted-untwisted bistable nematic LCDs
333(6)
10.5.3 Surface-stabilized nematic liquid crystals
339(3)
10.6 Bistable Cholesteric Reflective Display
342(16)
10.6.1 Introduction
342(2)
10.6.2 Optical properties of bistable Ch reflective displays
344(3)
10.6.3 Encapsulated cholesteric liquid crystal displays
347(1)
10.6.4 Transition between cholesteric states
347(8)
10.6.5 Drive schemes for bistable Ch displays
355(3)
Homework Problems
358(1)
References
359(4)
11 Liquid Crystal/Polymer Composites 363(50)
11.1 Introduction
363(2)
11.2 Phase Separation
365(12)
11.2.1 Binary mixture
365(4)
11.2.2 Phase diagram and thermal induced phase separation
369(2)
11.2.3 Polymerization induced phase separation
371(3)
11.2.4 Solvent-induced phase separation
374(2)
11.2.5 Encapsulation
376(1)
11.3 Scattering Properties of LCPCs
377(6)
11.4 Polymer Dispersed Liquid Crystals
383(12)
11.4.1 Liquid crystal droplet configurations in PDLCs
383(2)
11.4.2 Switching PDLCs
385(2)
11.4.3 Scattering PDLC devices
387(4)
11.4.4 Dichroic dye-doped PDLC
391(2)
11.4.5 Holographic PDLCs
393(2)
11.5 PSLCs
395(5)
11.5.1 Preparation of PSLCs
395(1)
11.5.2 Working modes of scattering PSLCs
396(4)
11.6 Scattering-Based Displays from LCPCs
400(3)
11.6.1 Reflective displays
400(2)
11.6.2 Projection displays
402(1)
11.6.3 Transmissive direct-view displays
403(1)
11.7 Polymer-Stabilized LCDs
403(4)
Homework Problems
407(2)
References
409(4)
12 Tunable Liquid Crystal Photonic Devices 413(32)
12.1 Introduction
413(1)
12.2 Laser Beam Steering
414(5)
12.2.1 Optical phased array
415(2)
12.2.2 Prism-based beam steering
417(2)
12.3 Variable Optical Attenuators
419(4)
12.4 Tunable-Focus Lens
423(12)
12.4.1 Tunable-focus spherical lens
423(3)
12.4.2 Tunable-focus cylindrical lens
426(2)
12.4.3 Switchable positive and negative microlens
428(6)
12.4.4 Hermaphroditic LC microlens
434(1)
12.5 Polarization-Independent LC Devices
435(6)
12.5.1 Double-layered homogeneous LC cells
436(2)
12.5.2 Double-layered LC gels
438(3)
Homework Problems
441(1)
References
442(3)
13 Blue Phases of Chiral Liquid Crystals 445(32)
13.1 Introduction
445(1)
13.2 Phase Diagram of Blue Phases
446(1)
13.3 Reflection of Blue Phases
447(4)
13.3.1 Basics of crystal structure and X-ray diffraction
447(2)
13.3.2 Bragg reflection of blue phases
449(2)
13.4 Structure of Blue Phase
451(20)
13.4.1 Defect theory
452(7)
13.4.2 Landau theory
459(12)
13.5 Optical Properties of Blue Phase
471(4)
13.5.1 Reflection
471(1)
13.5.2 Transmission
472(3)
Homework Problems
475(1)
References
475(2)
14 Polymer-Stabilized Blue Phase Liquid Crystals 477(36)
14.1 Introduction
477(3)
14.2 Polymer-Stabilized Blue Phases
480(4)
14.2.1 Nematic LC host
482(1)
14.2.2 Chiral dopants
483(1)
14.2.3 Monomers
483(1)
14.3 Kerr Effect
484(12)
14.3.1 Extended Kerr effect
486(3)
14.3.2 Wavelength effect
489(1)
14.3.3 Frequency effect
490(1)
14.3.4 Temperature effects
491(5)
14.4 Device Configurations
496(11)
14.4.1 In-plane-switching BPLCD
497(4)
14.4.2 Protruded electrodes
501(3)
14.4.3 Etched electrodes
504(1)
14.4.4 Single gamma curve
504(3)
14.5 Vertical Field Switching
507(3)
14.5.1 Device structure
507(1)
14.5.2 Experiments and simulations
508(2)
14.6 Phase Modulation
510(1)
References
510(3)
15 Liquid Crystal Display Components 513(26)
15.1 Introduction
513(1)
15.2 Light Source
513(3)
15.3 Light-guide
516(1)
15.4 Diffuser
516(2)
15.5 Collimation Film
518(1)
15.6 Polarizer
519(11)
15.6.1 Dichroic absorbing polarizer
520(1)
15.6.2 Dichroic reflective polarizer
521(9)
15.7 Compensation Film
530(5)
15.7.1 Form birefringence compensation film
531(1)
15.7.2 Discotic liquid crystal compensation film
531(1)
15.7.3 Compensation film from rigid polymer chains
532(1)
15.7.4 Drawn polymer compensation film
533(2)
15.8 Color Filter
535(1)
References
536(3)
16 Three-Dimensional Displays 539(26)
16.1 Introduction
539(1)
16.2 Depth Cues
539(2)
16.2.1 Binocular disparity
539(1)
16.2.2 Convergence
540(1)
16.2.3 Motion parallax
540(1)
16.2.4 Accommodation
541(1)
16.3 Stereoscopic Displays
541(5)
16.3.1 Head-mounted displays
542(1)
16.3.2 Anaglyph
542(1)
16.3.3 Time sequential stereoscopic displays with shutter glasses
542(2)
16.3.4 Stereoscopic displays with polarizing glasses
544(2)
16.4 Autostereoscopic Displays
546(7)
16.4.1 Autostereoscopic displays based on parallax barriers
546(4)
16.4.2 Autostereoscopic displays based on lenticular lens array
550(2)
16.4.3 Directional backlight
552(1)
16.5 Integral imaging
553(1)
16.6 Holography
554(2)
16.7 Volumetric displays
556(4)
16.7.1 Swept volumetric displays
556(1)
16.7.2 Multi planar volumetric displays
557(3)
16.7.3 Points volumetric displays
560(1)
References
560(5)
Index 565
Deng-Ke Yang Liquid Crystal Institute, Kent State University, USA

Shin-Tson Wu College of Optics and Photonics, University of Central Florida, USA