|
Part I Parameterized Tractability |
|
|
|
|
3 | (12) |
|
1.1 Basic Classical Complexity |
|
|
3 | (4) |
|
|
7 | (2) |
|
1.3 Valiant--Vazirani and BPP |
|
|
9 | (3) |
|
|
12 | (1) |
|
|
13 | (2) |
|
|
15 | (10) |
|
|
15 | (1) |
|
2.2 The Other Flavors of Parameterized Tractability |
|
|
16 | (3) |
|
|
19 | (1) |
|
|
20 | (1) |
|
|
21 | (4) |
|
Part II Elementary Positive Techniques |
|
|
|
|
25 | (24) |
|
|
25 | (1) |
|
|
25 | (3) |
|
3.2.1 A Basic Search Tree |
|
|
25 | (1) |
|
3.2.2 Shrinking the Search Tree |
|
|
26 | (2) |
|
3.3 Planar Independent Set |
|
|
28 | (1) |
|
3.4 Planar Dominating Set and Annotated Reduction Rules |
|
|
29 | (4) |
|
|
29 | (2) |
|
3.4.2 An Improved Analysis |
|
|
31 | (2) |
|
|
33 | (3) |
|
|
36 | (1) |
|
3.7 Jump Number and Scheduling |
|
|
37 | (6) |
|
|
43 | (3) |
|
|
46 | (1) |
|
|
47 | (2) |
|
|
49 | (42) |
|
|
49 | (5) |
|
4.2 Heuristics and Applications I |
|
|
54 | (1) |
|
4.3 Shrink the Kernel: The Nemhauser--Trotter Theorem |
|
|
55 | (4) |
|
|
59 | (1) |
|
4.5 Heuristics and Applications II |
|
|
60 | (2) |
|
4.6 Heuristics and Applications III |
|
|
62 | (1) |
|
4.7 Definition of a Kernel |
|
|
63 | (1) |
|
4.8 k-Maximum Leaf Spanning Tree |
|
|
64 | (3) |
|
4.9 Hereditary Properties and Leizhen Cai's Theorem |
|
|
67 | (2) |
|
4.10 Maximum Agreement Forest |
|
|
69 | (12) |
|
|
69 | (5) |
|
4.10.2 The Algorithm and Correctness |
|
|
74 | (7) |
|
|
81 | (1) |
|
|
81 | (7) |
|
|
88 | (1) |
|
|
89 | (2) |
|
|
91 | (16) |
|
|
91 | (9) |
|
5.1.1 Rooted K-Leaf Outbranchtng |
|
|
91 | (1) |
|
5.1.2 s-t and r-r Numberings |
|
|
92 | (3) |
|
5.1.3 A Second Combinatorial Bound |
|
|
95 | (1) |
|
|
96 | (3) |
|
5.1.5 K-leaf Outbranching and Turing Kernels |
|
|
99 | (1) |
|
|
100 | (4) |
|
|
104 | (2) |
|
|
106 | (1) |
|
|
106 | (1) |
|
6 Iterative Compression, and Measure and Conquer, for Minimization Problems |
|
|
107 | (24) |
|
6.1 Iterative Compression: The Basic Technique |
|
|
107 | (2) |
|
|
109 | (3) |
|
6.3 Heuristics and Algorithmic Improvements |
|
|
112 | (1) |
|
|
113 | (4) |
|
|
117 | (11) |
|
6.5.1 The Simplified Algorithm |
|
|
117 | (4) |
|
|
121 | (4) |
|
6.5.3 An Improved Running Time Using Measure and Conquer |
|
|
125 | (3) |
|
|
128 | (1) |
|
|
129 | (1) |
|
|
130 | (1) |
|
7 Further Elementary Techniques |
|
|
131 | (12) |
|
7.1 Methods Based on Induction |
|
|
131 | (3) |
|
7.1.1 The Extremal Method |
|
|
131 | (1) |
|
7.1.2 K-leaf Spanning Tree, Revisited |
|
|
132 | (2) |
|
|
134 | (3) |
|
7.2.1 3-Dimensional Matching |
|
|
135 | (2) |
|
7.3 Bounded Variable Integer Programming |
|
|
137 | (2) |
|
|
139 | (2) |
|
|
141 | (1) |
|
|
141 | (2) |
|
8 Color Coding, Multilinear Detection, and Randomized Divide and Conquer |
|
|
143 | (28) |
|
|
143 | (1) |
|
|
144 | (1) |
|
8.1.2 Dynamic Programming |
|
|
144 | (1) |
|
8.2 The Randomized Technique |
|
|
144 | (1) |
|
|
145 | (3) |
|
8.3.1 Multidimensional Matching |
|
|
147 | (1) |
|
8.4 Speeding Things up with Multilinear Detection |
|
|
148 | (5) |
|
8.4.1 Group Algebras over Zk2 |
|
|
149 | (4) |
|
8.5 Randomized Divide and Conquer |
|
|
153 | (2) |
|
|
155 | (7) |
|
8.6.1 The Algorithm and the Kernel |
|
|
156 | (1) |
|
8.6.2 Probability of a Good Coloring |
|
|
157 | (1) |
|
8.6.3 Solving a Colored Instance |
|
|
158 | (2) |
|
8.6.4 Derandomization with Universal Coloring Families |
|
|
160 | (2) |
|
8.7 Solving MAX-r-SAT Above a Tight Lower Bound |
|
|
162 | (3) |
|
|
165 | (3) |
|
|
168 | (2) |
|
|
170 | (1) |
|
9 Optimization Problems, Approximation Schemes, and Their Relation to FPT |
|
|
171 | (14) |
|
|
171 | (1) |
|
9.2 Optimization Problems |
|
|
171 | (1) |
|
9.3 How FPT and Optimization Problems Relate: Part I |
|
|
172 | (4) |
|
9.4 The Classes MAX SNP, MIN F+ Π1(h) and FPT |
|
|
176 | (5) |
|
|
181 | (1) |
|
|
182 | (1) |
|
|
182 | (3) |
|
Part III Techniques Based on Graph Structure |
|
|
|
10 Treewidth and Dynamic Programming |
|
|
185 | (20) |
|
10.1 Basic Facts About Treewidth |
|
|
185 | (4) |
|
|
185 | (1) |
|
10.1.2 The Basic Definitions |
|
|
186 | (3) |
|
|
189 | (1) |
|
10.3 Algorithms for Graphs of Bounded Treewidth |
|
|
190 | (3) |
|
|
193 | (2) |
|
10.5 Bodlaender's Theorem |
|
|
195 | (7) |
|
|
202 | (1) |
|
|
202 | (1) |
|
|
203 | (2) |
|
11 Heuristics for Treewidth |
|
|
205 | (8) |
|
|
205 | (1) |
|
|
206 | (1) |
|
|
207 | (2) |
|
|
209 | (2) |
|
|
211 | (1) |
|
|
211 | (1) |
|
|
211 | (2) |
|
12 Methods via Automata and Bounded Treewidth |
|
|
213 | (52) |
|
|
213 | (1) |
|
12.2 Deterministic Finite Automata |
|
|
213 | (3) |
|
|
216 | (1) |
|
|
216 | (1) |
|
12.3 Nondeterministic Finite Automata |
|
|
216 | (6) |
|
|
221 | (1) |
|
|
221 | (1) |
|
|
222 | (5) |
|
|
226 | (1) |
|
|
226 | (1) |
|
12.5 The Myhill--Nerode Theorem and the Method of Test Sets |
|
|
227 | (10) |
|
|
234 | (1) |
|
|
235 | (2) |
|
|
237 | (10) |
|
|
246 | (1) |
|
|
246 | (1) |
|
12.7 Parse Trees for Graphs of Bounded Treewidth and an Analogue of the Myhill--Nerode Theorem |
|
|
247 | (17) |
|
|
263 | (1) |
|
|
263 | (1) |
|
|
264 | (1) |
|
|
265 | (14) |
|
|
265 | (7) |
|
13.2 Implementing Courcelle's Theorem |
|
|
272 | (1) |
|
|
272 | (2) |
|
|
274 | (1) |
|
|
275 | (1) |
|
|
276 | (2) |
|
|
278 | (1) |
|
14 More on Width-Metrics: Applications and Local Treewidth |
|
|
279 | (12) |
|
14.1 Applications of Width Metrics to Objects Other than Graphs |
|
|
279 | (5) |
|
|
280 | (1) |
|
14.1.2 Matroid Treewidth and Branchwidth |
|
|
281 | (1) |
|
14.1.3 Knots, Links, and Polynomials |
|
|
282 | (2) |
|
|
284 | (4) |
|
|
284 | (2) |
|
14.2.2 The Frick--Grohe Theorem |
|
|
286 | (2) |
|
|
288 | (1) |
|
|
288 | (1) |
|
|
289 | (2) |
|
15 Depth-First Search and the Plehn--Voigt Theorem |
|
|
291 | (10) |
|
|
291 | (2) |
|
|
293 | (2) |
|
15.3 Bounded-Width Subgraphs, the Plehn--Voigt Theorem, and Induced Subgraphs |
|
|
295 | (4) |
|
|
299 | (1) |
|
|
300 | (1) |
|
|
300 | (1) |
|
|
301 | (18) |
|
|
301 | (1) |
|
16.2 Basic Properties of Branchwidth |
|
|
302 | (1) |
|
16.3 Dynamic Programming and Branchwidth |
|
|
303 | (3) |
|
16.4 Fast Matrix Multiplication and Dynamic Programming |
|
|
306 | (3) |
|
16.4.1 Improving Things Using Matrix Multiplication |
|
|
307 | (2) |
|
16.5 Cliquewidth and Rankwidth |
|
|
309 | (3) |
|
|
312 | (1) |
|
|
313 | (2) |
|
|
315 | (1) |
|
|
316 | (1) |
|
|
316 | (3) |
|
Part IV Exotic Meta-techniques |
|
|
|
17 Well-Quasi-Orderings and the Robertson--Seymour Theorems |
|
|
319 | (20) |
|
17.1 Basics of Well-Quasi-Orderings Theory |
|
|
319 | (14) |
|
17.2 Connections with Automata Theory and Boundaried Graphs |
|
|
333 | (3) |
|
|
336 | (1) |
|
|
337 | (1) |
|
|
338 | (1) |
|
18 The Graph Minor Theorem |
|
|
339 | (12) |
|
|
339 | (1) |
|
|
340 | (2) |
|
|
342 | (3) |
|
18.4 The Graph Minor Theorem |
|
|
345 | (2) |
|
18.5 The Immersion and Topological Orders |
|
|
347 | (1) |
|
|
348 | (1) |
|
|
349 | (1) |
|
|
350 | (1) |
|
|
350 | (1) |
|
19 Applications of the Obstruction Principle and WQOs |
|
|
351 | (24) |
|
19.1 Methods for Tractability |
|
|
351 | (6) |
|
19.2 Effectivizations of Obstruction-Based Methods |
|
|
357 | (7) |
|
19.2.1 Effectivization by Self-reduction |
|
|
357 | (4) |
|
19.2.2 Effectivization by Obstruction Set Computation |
|
|
361 | (3) |
|
19.3 The Irrelevant Vertex Technique |
|
|
364 | (1) |
|
|
365 | (4) |
|
19.4.1 Informal Description |
|
|
366 | (1) |
|
19.4.2 Overview of the Protrusion Based Meta-kernelization Results |
|
|
367 | (1) |
|
19.4.3 Overview of the Methods |
|
|
368 | (1) |
|
|
369 | (2) |
|
|
371 | (1) |
|
|
372 | (3) |
|
|
|
|
375 | (8) |
|
|
375 | (2) |
|
20.2 Parameterized Reductions |
|
|
377 | (3) |
|
|
380 | (2) |
|
|
382 | (1) |
|
|
382 | (1) |
|
21 The Basic Class W[ 1] and an Analog of Cook's Theorem |
|
|
383 | (24) |
|
|
383 | (1) |
|
21.2 Short Turing Machine Acceptance |
|
|
384 | (17) |
|
|
401 | (4) |
|
|
405 | (1) |
|
|
406 | (1) |
|
22 Some Other W[ 1] Hardness Results |
|
|
407 | (20) |
|
22.1 Perfect code and the Turing Way to W-Membership |
|
|
407 | (5) |
|
|
412 | (2) |
|
|
414 | (10) |
|
|
424 | (2) |
|
|
426 | (1) |
|
|
426 | (1) |
|
|
427 | (34) |
|
|
427 | (2) |
|
23.2 The Normalization Theorem |
|
|
429 | (15) |
|
23.2.1 The Dominating Set Reduction |
|
|
429 | (5) |
|
23.2.2 The Proof of the Normalization Theorem |
|
|
434 | (10) |
|
23.3 Monotone and Antimonotone Formulas |
|
|
444 | (2) |
|
23.4 The W*-Hierarchy and Generalized Normalization to W*[ t] |
|
|
446 | (9) |
|
|
447 | (1) |
|
23.4.2 An Improved Characterization of W[ 1] |
|
|
448 | (7) |
|
|
455 | (4) |
|
|
459 | (1) |
|
|
459 | (2) |
|
24 The Monotone and Antimonotone Collapse Theorems: Monotone W[ 2t + 1] = W[ 2t] and Antimonotone W[ 2t + 2] = W[ 2t + 1] |
|
|
461 | (12) |
|
|
461 | (10) |
|
|
471 | (1) |
|
|
471 | (2) |
|
|
473 | (18) |
|
|
473 | (12) |
|
|
485 | (3) |
|
|
488 | (1) |
|
|
489 | (2) |
|
26 Fixed Parameter Analogues of PSpace and k-Move Games |
|
|
491 | (18) |
|
|
491 | (1) |
|
|
491 | (4) |
|
|
495 | (4) |
|
26.4 Relational Databases |
|
|
499 | (3) |
|
|
502 | (4) |
|
|
506 | (1) |
|
|
507 | (2) |
|
27 Provable Intractability: The Class XP |
|
|
509 | (12) |
|
27.1 Introduction and X Classes |
|
|
509 | (1) |
|
|
510 | (7) |
|
27.3 Other XP-Completeness Results |
|
|
517 | (1) |
|
|
518 | (1) |
|
|
518 | (1) |
|
|
519 | (2) |
|
28 Another Basis for the W-Hierarchy and the Tradeoff Theorem |
|
|
521 | (14) |
|
|
521 | (9) |
|
|
530 | (1) |
|
|
531 | (1) |
|
|
531 | (4) |
|
Part VI Approximations, Connections, Lower Bounds |
|
|
|
29 The M-Hierarchy, and XP-Optimality |
|
|
535 | (36) |
|
|
535 | (1) |
|
29.2 The W-Hierarchy and SubEXP Time |
|
|
535 | (6) |
|
|
541 | (1) |
|
29.4 Parametric Miniatures |
|
|
542 | (4) |
|
29.5 The Sparsification Lemma |
|
|
546 | (7) |
|
29.5.1 Statement of the Lemma |
|
|
546 | (1) |
|
29.5.2 Using the Lemma for O*(2°(k)) Lower Bounds |
|
|
546 | (6) |
|
29.5.3 No O*((1 + ε)k) Algorithm for Vertex Cover |
|
|
552 | (1) |
|
29.6 The Proof of the Sparsification Lemma |
|
|
553 | (3) |
|
|
556 | (1) |
|
29.8 Treewidth Lower Bounds |
|
|
557 | (2) |
|
29.9 The Strong Exponential Time Hypothesis |
|
|
559 | (2) |
|
29.10 Subexponential Algorithms and Bidimensionality |
|
|
561 | (4) |
|
|
565 | (2) |
|
|
567 | (3) |
|
|
567 | (2) |
|
|
569 | (1) |
|
|
570 | (1) |
|
30 Kernelization Lower Bounds |
|
|
571 | (52) |
|
|
571 | (1) |
|
30.2 A Generic Engine for Lower Bounds of Kernels |
|
|
572 | (5) |
|
30.3 Applications of OR-Composition |
|
|
577 | (2) |
|
30.3.1 Notes on Turing Kernels |
|
|
579 | (1) |
|
|
579 | (3) |
|
30.5 Proof of Drucker's Theorem |
|
|
582 | (6) |
|
30.5.1 Statistical Distance and Distinguishability |
|
|
582 | (1) |
|
30.5.2 Proof of Theorem 30.5.2 |
|
|
583 | (5) |
|
|
588 | (4) |
|
|
592 | (3) |
|
|
595 | (1) |
|
|
596 | (1) |
|
|
597 | (9) |
|
30.10.1 Co-nondeterministic Composition, and k-ramsey |
|
|
597 | (5) |
|
30.10.2 Co-nondeterministic Cross-composition and Hereditary Properties |
|
|
602 | (4) |
|
30.11 Weak Composition and Sharp Lower Bounds Revisited |
|
|
606 | (6) |
|
30.12 Miniature Parametric Miniatures |
|
|
612 | (3) |
|
|
615 | (4) |
|
|
619 | (1) |
|
|
619 | (4) |
|
|
|
31 Parameterized Approximation |
|
|
623 | (22) |
|
|
623 | (5) |
|
|
628 | (5) |
|
|
633 | (2) |
|
31.4 Parameterized Online Algorithms and Incremental Computing |
|
|
635 | (4) |
|
|
636 | (1) |
|
31.4.2 Online Coloring Graphs of Bounded Pathwidth |
|
|
636 | (3) |
|
31.5 Parameterized Inapproximability |
|
|
639 | (2) |
|
|
641 | (2) |
|
|
643 | (1) |
|
|
644 | (1) |
|
32 Parameterized Counting and Randomization |
|
|
645 | (32) |
|
|
645 | (1) |
|
32.2 Classical Counting Problems and #P |
|
|
646 | (2) |
|
32.3 #W[ 1]---A Parameterized Counting Class |
|
|
648 | (1) |
|
32.4 The Counting Analog of Cook's Theorem |
|
|
649 | (8) |
|
|
657 | (1) |
|
32.6 An Analog of Valiant's Theorem |
|
|
658 | (5) |
|
32.7 Parameterized Randomization |
|
|
663 | (7) |
|
|
670 | (1) |
|
|
671 | (2) |
|
|
673 | (4) |
|
Part VIII Research Horizons |
|
|
|
|
677 | (12) |
|
|
677 | (2) |
|
|
679 | (2) |
|
33.3 More Tough Customers |
|
|
681 | (3) |
|
33.4 Exemplars of Programs |
|
|
684 | (5) |
|
|
|
34 Appendix 1: Network Flows and Matchings |
|
|
689 | (16) |
|
|
689 | (6) |
|
|
689 | (2) |
|
|
691 | (1) |
|
34.1.3 The Ford-Fulkerson Algorithm |
|
|
692 | (1) |
|
|
693 | (2) |
|
|
695 | (2) |
|
|
697 | (2) |
|
34.4 Bipartite Graphs and vertex cover |
|
|
699 | (1) |
|
34.5 Matching and Co-graphic Matroids |
|
|
700 | (4) |
|
34.6 The Matroid Parity Problem |
|
|
704 | (1) |
|
35 Appendix 2: Menger's Theorems |
|
|
705 | (4) |
|
|
705 | (2) |
|
|
707 | (2) |
References |
|
709 | (36) |
Index |
|
745 | |