Atjaunināt sīkdatņu piekrišanu

E-grāmata: Fundamentals of Radio Astronomy: Astrophysics

(University of Massachusetts Amherst, Massachusetts, USA), (Union College, Schenectady, New York, USA), (National Autonomous University of Mexico, Morelia)
  • Formāts - PDF+DRM
  • Cena: 57,60 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

As demonstrated by five Nobel Prizes in physics, radio astronomy has contributed greatly to our understanding of the Universe. Courses covering this subject are, therefore, very important in the education of the next generation of scientists who will continue to explore the Cosmos.

This textbook, the second of two volumes, presents an extensive introduction to the astrophysical processes that are studied in radio astronomy. Suitable for undergraduate courses on radio astronomy, it discusses the physical phenomena that give rise to radio emissions, presenting examples of astronomical objects, and illustrating how the relevant physical parameters of astronomical sources can be obtained from radio observations.

Unlike other radio astronomy textbooks, this book provides students with an understanding of the background and the underlying principles, with derivations available for most of the equations used in the textbook.

Features:

  • Presents a clear and concise discussion of the important astronomical concepts and physical processes that give rise to both radio continuum and radio spectral line emission
  • Discusses radio emissions from a variety of astronomical sources and shows how the observed emissions can be used to derive the physical properties of these sources
  • Includes numerous examples using actual data from the literature

Recenzijas

"Since the detection of HI at 21 cm wavelength and the discovery of CO in dark clouds, radio astronomy has been a central tool in studies of the interstellar medium and star forming clouds. This has been even more true with the advent of cm and mm interferometers, and the more recent availability of the EVLA and ALMA has transformed the study of circumstellar disks and of outflows. This two-volume set of introductory textbooks provide the essential foundation for students who plan to use radio observations in the study of molecular clouds, HII regions, and star formation. While one volume focuses on the instrumentation, telescopes, and observing methods of radio astronomy, the other deals with the astrophysical processes that give rise to radio emission. All three authors have taught radio astronomy courses, and the books are organized with questions and problems after each chapter. The books are also equipped with extensive appendices with supporting material that focus on background and technical information."

The Star Formation Newsletter No 323, November 2019 "Since the detection of HI at 21 cm wavelength and the discovery of CO in dark clouds, radio astronomy has been a central tool in studies of the interstellar medium and star forming clouds. This has been even more true with the advent of cm and mm interferometers, and the more recent availability of the EVLA and ALMA has transformed the study of circumstellar disks and of outflows. This two-volume set of introductory textbooks provide the essential foundation for students who plan to use radio observations in the study of molecular clouds, HII regions, and star formation. While one volume focuses on the instrumentation, telescopes, and observing methods of radio astronomy, the other deals with the astrophysical processes that give rise to radio emission. All three authors have taught radio astronomy courses, and the books are organized with questions and problems after each chapter. The books are also equipped with extensive appendices with supporting material that focus on background and technical information."

The Star Formation Newsletter No 323, November 2019

Preface xi
Acknowledgments xiii
Chapter 1 Introductory Material
1(28)
1.1 Units and Nomenclature
2(3)
1.1.1 Issues with Units of Electricity and Magnetism
2(2)
1.1.2 Astronomy Units
4(1)
1.1.3 Nomenclature for Atomic Ionization States
5(1)
1.2 Radiation Measures
5(8)
1.2.1 Luminosity
5(1)
1.2.2 Flux
5(1)
1.2.3 Flux Density
6(2)
1.2.4 Intensity
8(2)
1.2.5 Polarization
10(3)
1.3 Sky Coordinates
13(2)
1.3.1 Equatorial Coordinate System
13(2)
1.3.2 Galactic Coordinate System
15(1)
1.4 Doppler Effect
15(5)
1.4.1 Classical Doppler Effect
17(1)
1.4.2 Relativists Doppler Effect
18(2)
1.5 Cosmological Redshift and the Expanding Universe
20(3)
1.6 Distance and Age Calculations
23(4)
Questions and Problems
27(2)
Chapter 2 Propagation of Radiation
29(18)
2.1 Radiative Transfer
29(8)
2.1.1 Absorption of Radiation
29(3)
2.1.2 Emission of Radiation
32(3)
2.1.3 General Radiative Transfer Equation
35(2)
2.2 Propagation in an Ionized Medium
37(8)
2.2.1 Plasma Frequency
37(2)
2.2.2 Dispersion Measure
39(2)
2.2.3 Faraday Rotation
41(4)
Questions and Problems
45(2)
Chapter 3 Continuum Emission Processes
47(36)
3.1 Radiation from Accelerated Charges
47(3)
3.2 Thermal Radiation
50(17)
3.2.1 Blackbody Radiation
51(9)
3.2.2 Rayleigh-Jeans Approximation
60(2)
3.2.3 Brightness Temperature
62(1)
3.2.4 Thermal Bremsstrahlung Radiation (or Free-Free Emission)
63(4)
3.3 Non-Thermal Radiation
67(12)
3.3.1 Cyclotron Radiation
67(3)
3.3.2 Synchrotron Radiation by a Single Relativistic Electron
70(3)
3.3.3 Radiation by an Ensemble of Relativistic Electrons
73(2)
3.3.4 Polarization of Synchrotron Radiation
75(1)
3.3.5 Optical Depth Effects: Synchrotron Self-Absorption
76(3)
Questions and Problems
79(4)
Chapter 4 Spectral Lines
83(38)
4.1 Emission and Absorption Lines
85(16)
4.1.1 Einstein Coefficients
85(1)
4.1.1.1 Spontaneous Emission
86(2)
4.1.1.2 Absorption
88(1)
4.1.1.3 Stimulated Emission
89(1)
4.1.1.4 Absorption Coefficient
90(1)
4.1.1.5 Relations between the Einstein A and B Coefficients
91(1)
4.1.2 Line Broadening
91(2)
4.1.3 Spectral Line Radiative Transfer
93(2)
4.1.4 Kirchhoff's Rules for Spectroscopy
95(1)
4.1.5 Collisional Transition Rates and Excitation Temperature
96(5)
4.2 Radio Spectral Lines
101(17)
4.2.1 21-cm Spectral Line of Atomic Hydrogen
101(6)
4.2.2 Radio Recombination Spectral Lines
107(1)
4.2.3 Molecular Rotational Spectral Lines
108(10)
Questions and Problems
118(3)
Chapter 5 The Cold Interstellar Medium of the Milky Way
121(42)
5.1 21-CM SPECTRAL LINE OF ATOMIC HYDROGEN
124(13)
5.1.1 Observations of the 21-cm Line
124(5)
5.1.2 Rotation Curve of the Galaxy
129(2)
5.1.3 Distribution of HI in the Milky Way
131(2)
5.1.4 Absorption Lines - Warm and Cold Gas
133(4)
5.1.5 Magnetic Field
137(1)
5.2 Observations of the Rotational Lines of Molecules
137(16)
5.2.1 Molecular Clouds
138(8)
5.2.2 Distribution of Molecular Clouds in the Galaxy
146(1)
5.2.3 Molecular Cloud Cores
147(5)
5.2.4 Astrochemistry
152(1)
5.3 Observations of the Thermal Emission from Dust
153(7)
5.3.1 Dust Extinction
154(1)
5.3.2 Dust Emission
155(4)
5.3.3 Global Distribution of Dust
159(1)
Questions and Problems
160(3)
Chapter 6 HII Regions and Planetary Nebulae at Radio Wavelengths
163(28)
6.1 HII Regions
163(9)
6.1.1 Ionization Structure of HII Regions
164(5)
6.1.2 The Temperature of HII Regions
169(2)
6.1.3 Time Scales of HII Regions
171(1)
6.2 Radio Emission from HII Regions
172(12)
6.2.1 Bremsstrahlung Emission from HII Regions
172(4)
6.2.2 Radio Recombination Line Emission from HII Regions
176(6)
6.2.3 Gas Density and Temperature from RRLs: Non-Equilibrium Effects
182(2)
6.3 The Classification and Evolution of HII Regions
184(4)
6.3.1 Classification of HII Regions
184(1)
6.3.2 Evolution of HII Regions
185(3)
6.4 Planetary Nebulae
188(1)
Questions and Problems
189(2)
Chapter 7 Radio Emission from Stellar Objects
191(34)
7.1 Solar Radio Emission
191(5)
7.1.1 The Quiet Sun
191(3)
7.1.2 Slowly Varying Component of the Sun
194(2)
7.1.3 Radio Bursts
196(1)
7.2 Radio Emission from Stars
196(5)
7.2.1 Thermal Radio Emission
196(1)
7.2.1.1 Main Sequence Stars
197(1)
7.2.1.2 Giant and Supergiant Stars
198(1)
7.2.2 Winds from Asymptotic Giant Branch Stars
199(1)
7.2.3 Flare Stars
200(1)
7.3 Young Stars
201(5)
7.3.1 Proto-stellar Disks
201(2)
7.3.2 Thermal Radio Jets
203(1)
7.3.3 Molecular Outflows
204(2)
7.4 Radio Pulsars
206(16)
7.4.1 Pulsar Mechanics
208(5)
7.4.2 Pulsar Emission Mechanisms
213(3)
7.4.3 Pulsar Searches
216(2)
7.4.4 Binary Pulsars
218(1)
7.4.5 Radio Pulsars as Probes of the Interstellar Medium
218(2)
7.4.6 Supernova Remnants
220(2)
Questions and Problems
222(3)
Chapter 8 Galaxies at Radio Wavelengths
225(32)
8.1 21-CM HI Observations
227(9)
8.1.1 HI Mass of Galaxies
228(4)
8.1.2 Imaging HI in Galaxies
232(4)
8.2 Molecular Gas in Galaxies
236(7)
8.2.1 Molecular Gas Mass
237(3)
8.2.2 Imaging CO in Galaxies
240(1)
8.2.3 Other Molecules in Galaxies
241(2)
8.3 Radio Continuum Emission from Galaxies
243(6)
8.3.1 Dust Emission
244(3)
8.3.2 Long Wavelength Radio Continuum Emission
247(2)
8.4 Distant Galaxies
249(5)
Questions and Problems
254(3)
Chapter 9 Radio Galaxies and Quasars
257(38)
9.1 Brief Overview of Active Galactic Nuclei
257(6)
9.2 Agn Model
263(5)
9.3 Morphologies, Sizes, and Spectra of Radio Galaxies and Quasars
268(9)
9.3.1 Synchrotron Spectrum from an Inhomogeneous Source
272(2)
9.3.2 Free-free Absorption of Synchrotron Radiation
274(2)
9.3.3 Inverse Compton Scattering and the Compton Limit
276(1)
9.4 Inferring Physical Conditions in Agn
277(13)
9.4.1 Spectral Index Maps
278(2)
9.4.2 Kinematic Studies
280(6)
9.4.3 Magnetic Field Estimates
286(2)
9.4.4 Electron Cooling Timescales and the Nature of Hot Spots in Jets
288(2)
9.5 The Center of the Milky Way
290(1)
Questions and Problems
291(4)
Chapter 10 Cosmic Microwave Background
295(16)
10.1 Cosmological Models
295(2)
10.2 Blackbody Nature of the CMB
297(3)
10.3 Anisotropies In The CMB
300(4)
10.4 Cosmological Parameters
304(2)
10.5 CMB Polarization
306(1)
Questions and Problems
307(12)
Appendix A Constants and Conversions 311(2)
Appendix B Mathematica Code for Calculating Age of Universe and Distances for Given Redshift 313(2)
Appendix C Complex-Valued Wave Functions 315(4)
Appendix D Derivations of the Effects of Propagation of Radiation in Ionized Media 319(12)
D.1 Basic Equations of Electromagnetic Waves
319(2)
D.2 Applications to Real Media
321(4)
D.2.1 Dissipative Media
322(2)
D.2.2 The Plasma Frequency Equation
324(1)
D.2.3 Derivation of the Wave Velocity as a Function of Frequency and the Arrival Time of a Pulse
324(1)
D.3 Derivation of the Rotation Angle of Polarization in Magnetized Media
325(6)
Appendix E Fourier Transform 331(4)
E.1 Mathematical Definition
331(1)
E.2 Example: Fourier Transform of a Gaussian Function
332(1)
E.3 Application to an Accelerated Charge
332(3)
Index 335
Ronald L. Snell is a professor of astronomy at the University of Massachusetts, Amherst. His research interests include the physical and chemical properties of molecular clouds, star formation, and molecular outflows; he also has extensive experience observing at radio wavelengths. He earned a PhD in astronomy from the University of Texas at Austin.

Stanley E. Kurtz is a professor of radio astronomy and astrophysics at the National Autonomous University of Mexico. His research interests include massive star formation, the interstellar medium, and radio astronomy instrumentation and techniques. He earned a PhD in physics from the University of Wisconsin at Madison.

Jonathan M. Marr is a senior lecturer of physics and astronomy at Union College. His research involves high-resolution, radio-wavelength observations of radio galaxies and the Galactic center. He earned a PhD in astronomy from the University of California, Berkeley.