Atjaunināt sīkdatņu piekrišanu

E-grāmata: Fundamentals of Reinforcement Learning

  • Formāts: EPUB+DRM
  • Izdošanas datums: 14-Aug-2023
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783031373459
  • Formāts - EPUB+DRM
  • Cena: 53,52 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Izdošanas datums: 14-Aug-2023
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783031373459

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Artificial intelligence (AI) applications bring agility and modernity to our lives, and the reinforcement learning technique is at the forefront of this technology. It can outperform human competitors in strategy games, creative compositing, and autonomous movement. Moreover, it is just starting to transform our civilization.

This book provides an introduction to AI, specifies machine learning techniques, and explores various aspects of reinforcement learning, approaching the latest concepts in a didactic and illustrated manner. It is aimed at students who want to be part of technological advances and professors engaged in the development of innovative applications, helping with academic and industrial challenges.

Understanding the Fundamentals of Reinforcement Learning will allow you to:

  • Understand essential AI concepts
  • Gain professional experience
  • Interpret sequential decision problems and solve them with reinforcement learning
  • Learn how the Q-Learning algorithm works
  • Practice with commented Python code
  • Find advantageous directions


Chapter. 1. Introduction.
Chapter. 2. Concepts.
Chapter. 3. Q-Learning
algorithm.
Chapter. 4. Development tools.
Chapter. 5. Practice with code.-
Chapter. 6. Recent applications and future research.- Index.
Rafael Ris-Ala José Jardim is a professor and researcher in Machine Learning and Research Methodology at the Federal University of Rio de Janeiro (UFRJ) and at Faculdade XP Educaēćo (XPE). He holds a master's degree in Data Science from UFRJ and is currently pursuing his Ph.D. in Artificial Intelligence at the same institution.

He is the author of several articles on Software Engineering and has supervised more than 50 academic papers. He is a recognized journal reviewer for Elsevier and Clarivate and participates in reviewing IEEE scientific papers.

He served as Infrastructure Project Manager at the Pontifical Catholic University of Rio de Janeiro (PUC-Rio) and was responsible for creating a Data Center. He has more than 10 years of experience in Software Development in the Brazilian Navy.