Atjaunināt sīkdatņu piekrišanu

Fundamentals of Solid State Engineering Fourth Edition 2019 [Hardback]

  • Formāts: Hardback, 689 pages, height x width: 235x155 mm, weight: 1577 g, 139 Illustrations, color; 260 Illustrations, black and white; XXXI, 689 p. 399 illus., 139 illus. in color., 1 Hardback
  • Izdošanas datums: 03-Sep-2018
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3319757075
  • ISBN-13: 9783319757070
  • Hardback
  • Cena: 127,23 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 149,69 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 689 pages, height x width: 235x155 mm, weight: 1577 g, 139 Illustrations, color; 260 Illustrations, black and white; XXXI, 689 p. 399 illus., 139 illus. in color., 1 Hardback
  • Izdošanas datums: 03-Sep-2018
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3319757075
  • ISBN-13: 9783319757070
The fourth edition of this class-tested, multi-disciplinary introduction to solid state engineering adds dozens of revised and updated sections and problems, as well as three new chapters on solar energy harvesting, thermal and photothermal energy harvesting, and photo-thermovoltaics. Combining concepts from physics, chemistry, electrical engineering, materials science, and mechanical engineering, Professor Razeghi describes electron-electron and electron-phonon interactions, the Kane effective mass method, the carbon atom, thermal properties of crystals, the harmonic oscillator, the hydrogen atom, the quantum mechanical description of angular momentum, and the origin of spin in a chapter devoted to quantum mechanics. This textbook features an improved transport theory description that goes beyond Drude theory, discussing the Boltzmann approach. Introducing students to the rigorous quantum mechanical way of thinking about and formulating transport processes, this fourth edition presents the basic physics concepts and thorough treatment of semiconductor characterization technology, designed for solid state engineers.
1 Electronic Structure of Atoms
1(28)
1.1 Introduction
1(1)
1.2 Spectroscopic Emission lines and Atomic Structure of Hydrogen
2(3)
1.3 Atomic Orbitals
5(3)
1.4 Structures of Atoms with Many Electrons
8(4)
1.5 Bonds in Solids
12(8)
1.5.1 General Principles
12(1)
1.5.2 Ionic Bonds
13(2)
1.5.3 Covalent Bonds
15(1)
1.5.4 Mixed Bonds
16(1)
1.5.5 Metallic Bonds
17(1)
1.5.6 Secondary Bonds
18(2)
1.6 Atomic Property Trends in the Periodic Table
20(4)
1.6.1 The Periodic Table
20(2)
1.6.2 Atomic and Ionic Radii
22(1)
1.6.3 Ionization Energy
22(1)
1.6.4 Electron Affinity
23(1)
1.6.5 Electronegativity
23(1)
1.6.6 Summary of Trends
24(1)
1.7 Introduction to Energy Bands
24(2)
1.8 Summary
26(1)
Problems
26(2)
Further Reading
28(1)
2 The Carbon Atom
29(22)
2.1 Introduction: The Carbon Atom
29(3)
2.1.1 Isotopes of Carbon Atom
29(1)
2.1.2 Electronic Configuration
30(2)
2.1.3 Binding Energies
32(1)
2.2 Covalent Bonding Between Carbon Atoms
32(2)
2.3 Carbon Allotropes
34(3)
2.4 Carbon Fullerenes
37(2)
2.4.1 Buckyballs
37(2)
2.5 Graphene and Nanotubes
39(2)
2.6 Definition of Bonding Energy and Energy Bands
41(2)
2.7 Band Structure of Fullerenes (Buckyballs)
43(1)
2.8 Band Structure of Carbon Nanotubes
43(1)
2.9 Background Needed for Energy Levels and Band Structure
44(1)
2.9.1 Tight Binding Method
44(1)
2.9.2 Free Electron Method
44(1)
2.10 Summary
45(1)
2.11 Conclusion: The Future
46(2)
Problems
48(1)
References
48(1)
Further Reading
48(3)
3 Crystalline Properties of Solids
51(34)
3.1 Introduction
51(3)
3.2 Crystal Lattices and the Seven Crystal Systems
54(2)
3.3 The Unit Cell Concept
56(2)
3.4 The Wigner-Seitz Cell
58(1)
3.5 Bravais Lattices
58(1)
3.6 Point Groups
58(9)
3.6.1 Cs Group (Plane Reflection)
60(1)
3.6.2 Cn Groups (Rotation)
61(1)
3.6.3 Cnh and Cnv Groups
62(1)
3.6.4 Dn Groups
62(1)
3.6.5 Dnh and Groups
62(2)
3.6.6 Ci Group
64(1)
3.6.7 C3i and S4 Groups
64(1)
3.6.8 T Group
65(1)
3.6.9 Td Group
66(1)
3.6.10 O Group
66(1)
3.6.11 Oh Group
67(1)
3.6.12 List of Crystallographic Point Groups
67(1)
3.7 Space Groups
67(1)
3.8 Directions and Planes in Crystals: Miller Indices
67(5)
3.9 Real Crystal Structures
72(7)
3.9.1 Diamond Structure
72(2)
3.9.2 Zinc Blende Structure
74(1)
3.9.3 Sodium Chloride Structure
75(1)
3.9.4 Cesium Chloride Structure
75(1)
3.9.5 Hexagonal Close-Packed Structure
76(1)
3.9.6 Wurtzite Structure
77(1)
3.9.7 Packing Factor
78(1)
3.10 The Reciprocal Lattice
79(3)
3.11 The Brillouin Zone
82(1)
3.12 Summary
82(1)
Problems
83(1)
Further Reading
84(1)
4 Introduction to Quantum Mechanics
85(64)
4.1 The Quantum Concepts
85(6)
4.1.1 Blackbody Radiation
85(2)
4.1.2 The Photoelectric Effect
87(3)
4.1.3 Wave-Particle Duality
90(1)
4.1.4 The Davisson-Germer Experiment
90(1)
4.2 Elements of Quantum Mechanics
91(9)
4.2.1 Basic Formalism
91(2)
4.2.2 General Properties of Wavefunctions and the Schrodinger Equation
93(1)
4.2.3 The Time-Independent Schrodinger Equation
94(3)
4.2.4 The Heisenberg Uncertainty Principle
97(1)
4.2.5 The Dirac Notation
98(1)
4.2.6 The Heisenberg Equation of Motion
99(1)
4.3 Discussion
100(1)
4.4 Simple Quantum Mechanical Systems
101(8)
4.4.1 Free Particle
101(1)
4.4.2 Degeneracy
102(1)
4.4.3 Particle in a 1-D Box
102(2)
4.4.4 Particle in a Finite Potential Well
104(5)
4.5 Discussion
109(1)
4.6 The Harmonic Oscillator
110(1)
4.7 The Hydrogen Atom
111(12)
4.7.1 Motion in a Spherically Symmetric Potential
114(2)
4.7.2 Angular Momentum
116(2)
4.7.3 The Radial Wavefunction of the Hydrogen Atom
118(3)
4.7.4 The Unbound States
121(1)
4.7.5 The Two-Dimensional Hydrogen Atom
121(1)
4.7.6 The Electron Spin
122(1)
4.8 Relativity and Quantum Mechanics
123(5)
4.8.1 The Electron Spin Operator
127(1)
4.9 The Addition of Angular Momentum
128(1)
4.10 The Pauli Principle Applied to Many-Electron Systems: The Slater Determinant
129(1)
4.11 Summary
130(1)
4.12 The Electron in a Magnetic Field
131(3)
4.12.1 Degeneracy of the Landau Levels
133(1)
4.13 Discussion
134(1)
4.14 The Wentzel Kramer Brillouin Approximation
134(3)
4.15 Quantum Mechanical Perturbation Theory
137(5)
4.15.1 Time-Independent Perturbation
137(1)
4.15.2 Nondegenerate Perturbation Theory
138(2)
4.15.3 Degenerate-State Perturbation Theory to Second Order
140(2)
4.16 Final Summary
142(1)
Problems
142(5)
References
147(1)
Further Reading
147(2)
5 Electrons and Energy Band Structures in Crystals
149(54)
5.1 Introduction
149(1)
5.2 Electrons in a Crystal
149(17)
5.2.1 Bloch Theorem
149(2)
5.2.2 One-Dimensional Kronig-Penney Model
151(3)
5.2.3 Energy Bands
154(3)
5.2.4 Nearly Free Electron Approximation
157(2)
5.2.5 Tight-Binding Approximation
159(2)
5.2.6 Dynamics of Electrons in a Crystal
161(2)
5.2.7 Fermi Energy
163(2)
5.2.8 Electron Distribution Function
165(1)
5.3 Density of States (3D)
166(9)
5.3.1 Direct Calculation
166(4)
5.3.2 Other Approach
170(3)
5.3.3 Electrons and Holes
173(2)
5.4 Band Structures in Real Semiconductors
175(6)
5.4.1 First Brillouin Zone of an fee Lattice
175(2)
5.4.2 First Brillouin Zone of a bec Lattice
177(1)
5.4.3 First Brillouin Zones of a Few Semiconductors
178(3)
5.5 Two-Dimensional Semiconductors and Transition Metal Dichalcogenides "TMDC"
181(8)
5.5.1 Examples: Graphene (G) and TMDC
181(1)
5.5.2 Graphene Band Structure: Nearest Neighbor Tight Binding
181(4)
5.5.3 Two-Dimensional Metal-Dichalcogenide TMDC: Electronic Structures
185(1)
5.5.4 Example: Fabrication of Flexible Transistors
186(2)
5.5.5 Summary: Discussion
188(1)
5.6 Band Structures in Metals
189(2)
5.7 The Kane Effective Mass Method
191(7)
5.7.1 The Effect of the Spin-Orbit Coupling
194(4)
5.7.2 Summary
198(1)
Problems
198(2)
References
200(1)
Further Reading
200(3)
6 Phonons and Thermal Properties
203(48)
6.1 Phonons and Thermal Properties
203(23)
6.1.1 Introduction
203(1)
6.1.2 Interaction of Atoms in Crystals: Origin and Formalism
203(3)
6.1.3 One-Dimensional Monatomic Harmonic Crystal
206(4)
6.1.4 One-Dimensional Diatomic Harmonic Crystal
210(7)
6.1.5 Extension to Three-Dimensional Case
217(3)
6.1.6 Phonons
220(3)
6.1.7 Sound Velocity
223(2)
6.1.8 Summary
225(1)
6.2 Thermal Properties of Crystals
226(20)
6.2.1 Introduction
226(1)
6.2.2 Phonon Density of States (Debye Model)
226(12)
6.2.3 Thermal Expansion
238(4)
6.2.4 Thermal Conductivity
242(4)
6.2.5 Summary
246(1)
Problems for Phonons and Thermal Properties
246(1)
6.3 Problems for Thermal Properties of Crystals
247(2)
References
249(1)
Further Reading
249(2)
7 Equilibrium Charge Carrier Statistics in Semiconductors
251(24)
7.1 Introduction
251(1)
7.2 Density of States
251(3)
7.3 Effective Density of States (Conduction Band)
254(4)
7.4 Effective Density of States (Valence Band)
258(2)
7.5 Mass Action Law
260(1)
7.6 Doping: Intrinsic Versus Extrinsic Semiconductor
261(4)
7.7 Charge Neutrality
265(1)
7.8 Fermi Energy as a Function of Temperature
266(4)
7.9 Carrier Concentration in an n-Type Semiconductor
270(2)
7.10 Summary
272(1)
Problems
273(1)
References
274(1)
Further Reading
274(1)
8 Non-equilibrium Electrical Properties of Semiconductors
275(44)
8.1 introduction
275(1)
8.2 Electrical Conductivity
275(5)
8.2.1 Ohm's Law in Solids
275(4)
8.2.2 The Case of Semiconductors
279(1)
8.3 Carrier Mobility in Solids
280(2)
8.4 Hall Effect
282(5)
8.4.1 P-Type Semiconductor
282(2)
8.4.2 N-Type Semiconductor
284(2)
8.4.3 Compensated Semiconductor
286(1)
8.4.4 Hall Effect with Both Types of Charge Carriers
286(1)
8.5 Charge Carrier Diffusion
287(7)
8.5.1 Diffusion Currents
288(1)
8.5.2 Einstein Relations
289(1)
8.5.3 Diffusion Lengths
290(4)
8.6 Carrier Generation and Recombination Mechanisms
294(14)
8.6.1 Carrier Generation
294(1)
8.6.2 Direct Band-to-Band Recombination
295(3)
8.6.3 Shockley-Read-Hall Recombination
298(7)
8.6.4 Auger Band-to-Band Recombination
305(2)
8.6.5 Surface Recombination
307(1)
8.7 Quasi-Fermi Energy
308(2)
8.8 Transport Theory: Beyond Drude
310(5)
8.8.1 The Boltzmann Equation
310(4)
8.8.2 Connection to Drude Theory
314(1)
8.9 Summary
315(1)
Problems
315(3)
Further Reading
318(1)
9 Semiconductor p-n and Metal-Semiconductor Junctions
319(46)
9.1 Introduction
319(1)
9.2 Ideal p-n Junction at Equilibrium
319(12)
9.2.1 Ideal p-n Junction
319(1)
9.2.2 Depletion Approximation
320(4)
9.2.3 Built-in Electric Field
324(1)
9.2.4 Built-in Potential
325(3)
9.2.5 Depletion Width
328(2)
9.2.6 Energy Band Profile and Fermi Energy
330(1)
9.3 Non-equilibrium Properties of p-n Junctions
331(18)
9.3.1 Forward Bias: A Qualitative Description
332(3)
9.3.2 Reverse Bias: A Qualitative Description
335(1)
9.3.3 A Quantitative Description
335(4)
9.3.4 Depletion Layer Capacitance
339(1)
9.3.5 Ideal p-n Junction Diode Equation
340(7)
9.3.6 Minority and Majority Carrier Currents in Neutral Regions
347(2)
9.4 Deviations from the Ideal p-n Diode Case
349(7)
9.4.1 Reverse Bias Deviations from the Ideal Case
349(2)
9.4.2 Forward Bias Deviations from the Ideal Case
351(1)
9.4.3 Reverse Breakdown
352(1)
9.4.4 Avalanche Breakdown
353(2)
9.4.5 Zener Breakdown
355(1)
9.5 Metal-Semiconductor Junctions
356(5)
9.5.1 Formalism
356(1)
9.5.2 Schottky and Ohmic Contacts
357(4)
9.6 Summary
361(1)
Problems
361(2)
Further Reading
363(2)
10 Optical Properties of Semiconductors
365(44)
10.1 Introduction
365(1)
10.2 The Complex Refractive Index of a Solid
366(5)
10.2.1 Maxwell's Equations
366(3)
10.2.2 Reflectivity
369(1)
10.2.3 Transmission Through a Thin Slab
370(1)
10.3 The Free Carrier Contribution to the Complex Refractive Index
371(4)
10.3.1 The Drude Theory of Conductivity
371(3)
10.3.2 The Classical and Quantum Conductivity
374(1)
10.4 The Bound and Valence Electron Contributions to the Permittivity
375(8)
10.4.1 Time-Dependent Perturbation Theory
375(4)
10.4.2 Real Transitions and Absorption of Light
379(2)
10.4.3 The Permittivity of a Semiconductor
381(1)
10.4.4 The Effect of Bound Electrons on the Low-Frequency Optical Properties
382(1)
10.5 The Optical Absorption in Semiconductors
383(5)
10.5.1 Absorption Coefficient
383(2)
10.5.2 Excitonic Effects
385(2)
10.5.3 Direct and Indirect Bandgap Absorption
387(1)
10.6 The Effect of Phonons on the Permittivity
388(5)
10.6.1 Photon Polar Mode Coupling
388(3)
10.6.2 Application to Ionic Insulators
391(1)
10.6.3 The Phonon-Polariton
392(1)
10.7 Free Electrons in Static Electric Fields: The Franz-Keldysh Effect
393(4)
10.8 Nearly Free Electrons in a Magnetic Field
397(6)
10.9 Nonlinear Optical Susceptibility
403(1)
10.10 Summary
404(1)
Problems
405(1)
References
406(1)
Further Reading
407(2)
11 Solar Energy Harvesting
409(12)
11.1 Photovoltaic Cells (PVC) Introduction
409(1)
11.2 Examples of Photodiodes
410(1)
11.3 The Current Voltage Characteristic of a Solar Cell
410(3)
11.3.1 Solar Cell IV Characteristic Curve
412(1)
11.4 General Expression for the Quantum Efficiency
413(2)
11.5 Some Definitions, Power Collected
415(2)
11.6 Complete Mathematical Expression for the Quantum Efficiency
417(1)
11.7 Summary: Discussion
418(1)
Problems
419(1)
References and Further Reading
419(2)
12 Thermal and Photothermal Energy Harvesting
421(26)
12.1 Introduction
421(5)
12.1.1 Power Generation
422(1)
12.1.2 The Thermoelectric Effect
422(3)
12.1.3 The Thermoelectric Voltage
425(1)
12.2 Seebeck Coefficient of a Free Electron Gas
426(1)
12.3 The Seebeck Coefficient of an Undoped Semiconductor
426(1)
12.4 Doped Semiconductors
426(1)
12.5 Seebeck Coefficient and Conductivity of a Hopping Conductor, i.e., Amorphous Silicon
426(3)
12.6 Polaron Hopping
429(8)
12.6.1 Thermoelectric Efficiency
429(2)
12.6.2 Thermal Conductivity
431(1)
12.6.3 Thermal Conduction in the Diffusive Limit of Phonon Transport
432(4)
12.6.4 Phonon Contribution to Thermal Transport at Room T
436(1)
12.6.5 Electron Contribution for a Metal at Room T (Cp,e Is the Electronic Specific Heat)
436(1)
12.7 Summary: Typical Thermoelectric Generator
437(1)
12.8 Application to Cooling
437(2)
12.9 Materials Old and New
439(5)
12.9.1 Properties Which Make a Thermoelectric Material Efficient
439(1)
12.9.2 Low-Dimensional Structures
440(2)
12.9.3 Advantages of Lower Dimensionality
442(1)
12.9.4 Summary
443(1)
References and Further Reading
444(3)
13 Photo-thermovoltaics
447(14)
13.1 Photothermal Harvesting Using Photonic Crystal Conversion of Blackbody Heat into High-Energy Photons
447(3)
13.2 Dichalcogenides: From Monolayers to Nanotubes
450(1)
13.3 Special Case: Graphene
451(1)
13.4 Thermoelectric Mapping Graphene
452(1)
13.5 Phononic Crystals
453(1)
13.6 Organic Materials: Single Molecule Junctions
453(1)
13.7 Many-Electron Thermopower: The Effect of Electron Correlations
454(2)
13.7.1 Kondo Systems
454(2)
13.8 Material with Metal Insulator MI Transitions, Example VO2 Phase
456(1)
13.9 Summary: Conclusion
457(2)
13.10 Discussion
459(1)
Problems
459(1)
References and Further Reading
460(1)
14 Electron-Electron Interactions: Screening
461(12)
14.1 Introduction
461(3)
14.2 Static Response
464(1)
14.3 Screening in a Semiconductor
465(3)
14.4 Screening in a 2-Dimensional System
468(1)
14.5 Plasmon Modes
469(1)
14.6 Surface Plasmons
470(1)
14.7 Summary
471(1)
Problems
471(1)
References
471(1)
Further Reading
472(1)
15 Semiconductor Heterostructures and Low-Dimensional Quantum Structures
473(40)
15.1 Introduction
473(1)
15.2 Energy Band Offsets
474(1)
15.2.1 Type I Alignment
474(1)
15.2.2 Type II Alignments
475(1)
15.3 Application of Model Solid Theory
475(2)
15.4 Anderson Model for Heterojunctions
477(3)
15.5 Multiple Quantum Wells and Superlattices
480(1)
15.6 Two-Dimensional Structures: Quantum Wells
481(7)
15.6.1 Energy Spectrum
481(3)
15.6.2 Density of States
484(3)
15.6.3 The Influence of an Effective Mass
487(1)
15.7 One-Dimensional Structures: Quantum Wires
488(4)
15.7.1 Density of States
488(2)
15.7.2 Infinitely Deep Rectangular Wires
490(2)
15.8 Zero-Dimensional Structures: Quantum Dots
492(2)
15.8.1 Density of States
492(1)
15.8.2 Infinite Spherical Quantum Dot
493(1)
15.9 Optical Properties of Low-Dimensional Structures
494(5)
15.9.1 Interband Absorption Coefficients of Quantum
495(3)
15.9.2 Absorption Coefficient of Quantum Wires
498(1)
15.9.3 Absorption Coefficient of Quantum Dots
499(1)
15.10 Examples of Low-Dimensional Structures
499(9)
15.10.1 Quantum Wires
501(2)
15.10.2 Quantum Dots
503(2)
15.10.3 Effect of Electric and Magnetic Fields
505(3)
15.11 Summary
508(1)
Problems
508(3)
References
511(1)
Further Reading
511(2)
16 Quantum Transport
513(42)
16.1 Quantum Transport
513(31)
16.1.1 The Concept of Current in Quantum Mechanics
513(2)
16.1.2 Transmission and Reflection Coefficients
515(3)
16.1.3 Discussion
518(1)
16.1.4 The Electrical Resistance Due to Potential Barriers in Quantum Mechanics
519(1)
16.1.5 The Influence of the Applied Electric Field
520(1)
16.1.6 Resonant Tunneling Over a Double Barrier
521(5)
16.1.7 The Superlattice Dispersion
526(2)
16.1.8 The Stark-Wannier States
528(3)
16.1.9 Quantum Transport in Two-Dimensional Channels
531(3)
16.1.10 Motion in the Plane: Magnetoresistance and Hall Effect in Two-Dimensional Electron Gas
534(6)
16.1.11 The Fractional Quantum Hall Effect
540(2)
16.1.12 Landau-Stark-Wannier States
542(1)
16.1.13 The Effective Mass of Carriers: Cyclotron Resonance
542(1)
16.1.14 Summary
543(1)
16.2 Electron-Phonon Interactions
544(7)
16.2.1 Introduction
544(6)
16.2.2 The Polaron Effective Mass and Energy
550(1)
16.2.3 Summary
551(1)
Problems for Quantum Transport
551(1)
Problems for Electron-Phonon Interactions
552(1)
References
552(1)
Further Reading
553(2)
17 Compound Semiconductors and Crystal Growth Techniques
555(42)
17.1 Introduction
555(1)
17.2 III-V Semiconductor Alloys
556(5)
17.2.1 III-V Binary Compounds
556(1)
17.2.2 III-V Ternary Compounds
556(2)
17.2.3 III-V Quaternary Compounds
558(3)
17.3 II-VI Compound Semiconductors
561(1)
17.4 Bulk Single Crystal Growth Techniques
562(9)
17.4.1 Czochralski Growth Method
562(3)
17.4.2 Bridgman Growth Method
565(1)
17.4.3 Float-Zone Crystal Growth Method
566(2)
17.4.4 Lely Growth Method
568(2)
17.4.5 Crystal Wafer Fabrication
570(1)
17.5 Epitaxial Growth Techniques
571(16)
17.5.1 Liquid-Phase Epitaxy
571(2)
17.5.2 Vapor-Phase Epitaxy
573(3)
17.5.3 Metalorganic Chemical Vapor Deposition
576(5)
17.5.4 Molecular Beam Epitaxy
581(5)
17.5.5 Other Epitaxial Growth Techniques
586(1)
17.5.6 Ex Situ Characterization of Epitaxial Thin Films
587(1)
17.6 Thermodynamics and Kinetics of Growth
587(5)
17.6.1 Thermodynamics
587(1)
17.6.2 Feasibility of Chemical Reactions
588(2)
17.6.3 Phase Diagrams
590(1)
17.6.4 Kinetics
590(2)
17.7 Growth Modes
592(1)
17.8 Summary
593(1)
Problems
594(1)
References
595(1)
Further Reading
596(1)
18 Semiconductor Characterization Techniques
597(26)
18.1 Introduction
597(1)
18.2 Structural Characterization Techniques
597(13)
18.2.1 X-ray Diffraction
597(3)
18.2.2 Electron Microscopy
600(3)
18.2.3 Energy Dispersive Analysis Using X-rays (EDX)
603(1)
18.2.4 Auger Electron Spectroscopy (AES)
603(1)
18.2.5 X-ray Photoelectron Spectroscopy (XPS)
604(2)
18.2.6 Secondary-Ion Mass Spectroscopy (SIMS)
606(1)
18.2.7 Rutherford Backscattering (RBS)
606(2)
18.2.8 Scanning Probe Microscopy (SPM)
608(2)
18.3 Optical Characterization Techniques
610(5)
18.3.1 Photoluminescence Spectroscopy
610(1)
18.3.2 Cathodoluminescence Spectroscopy
611(1)
18.3.3 Reflectance Measurement
611(1)
18.3.4 Absorbance Measurement
611(1)
18.3.5 Ellipsometry
612(1)
18.3.6 Raman Spectroscopy
613(1)
18.3.7 Fourier Transform Spectroscopy
613(2)
18.4 Electrical Characterization Techniques
615(3)
18.4.1 Resistivity
615(1)
18.4.2 Hall Effect
616(1)
18.4.3 Capacitance Techniques
616(1)
18.4.4 Electrochemical Capacitance-Voltage Profiling
617(1)
18.5 Summary
618(1)
Problems
619(2)
References
621(1)
Further Reading
621(2)
19 Defects
623(18)
19.1 Introduction
623(2)
19.2 Point Defects
625(4)
19.2.1 Intrinsic Point Defects
625(2)
19.2.2 Extrinsic Point Defects
627(2)
19.3 Line Defects
629(3)
19.4 Planar Defects
632(4)
19.5 Volume Defects
636(1)
19.6 Defect Characterization
637(1)
19.7 Defects Generated During Semiconductor Crystal Growth
638(1)
19.8 Summary
638(1)
Problems
638(1)
References
639(1)
Further Reading
640(1)
Appendices 641(42)
Index 683
Dr. Manijeh Razeghi is Walter P. Murphy Professor of Electrical Engineering and Computer Science and Director, Center for Quantum Devices at Northwestern University in Evanston, IL. She earned the Docteur d'État čs Sciences Physiques, Université de Paris, Paris, France; a Docteur 3čme Cycle Solid State Physics, Université de Paris, Paris, France; and a DEA Science des Matériaux, Université de Paris, Paris, France. Her research interests include quantum devices, compound semiconductor science and nanotechnology, the physics of new semiconductor crystals for novel applications and realizing advanced semiconductor devices such as lasers, photodetectors, transistors, waveguides and switches.