|
1 Electronic Structure of Atoms |
|
|
1 | (28) |
|
|
1 | (1) |
|
1.2 Spectroscopic Emission lines and Atomic Structure of Hydrogen |
|
|
2 | (3) |
|
|
5 | (3) |
|
1.4 Structures of Atoms with Many Electrons |
|
|
8 | (4) |
|
|
12 | (8) |
|
|
12 | (1) |
|
|
13 | (2) |
|
|
15 | (1) |
|
|
16 | (1) |
|
|
17 | (1) |
|
|
18 | (2) |
|
1.6 Atomic Property Trends in the Periodic Table |
|
|
20 | (4) |
|
|
20 | (2) |
|
1.6.2 Atomic and Ionic Radii |
|
|
22 | (1) |
|
|
22 | (1) |
|
|
23 | (1) |
|
|
23 | (1) |
|
|
24 | (1) |
|
1.7 Introduction to Energy Bands |
|
|
24 | (2) |
|
|
26 | (1) |
|
|
26 | (2) |
|
|
28 | (1) |
|
|
29 | (22) |
|
2.1 Introduction: The Carbon Atom |
|
|
29 | (3) |
|
2.1.1 Isotopes of Carbon Atom |
|
|
29 | (1) |
|
2.1.2 Electronic Configuration |
|
|
30 | (2) |
|
|
32 | (1) |
|
2.2 Covalent Bonding Between Carbon Atoms |
|
|
32 | (2) |
|
|
34 | (3) |
|
|
37 | (2) |
|
|
37 | (2) |
|
2.5 Graphene and Nanotubes |
|
|
39 | (2) |
|
2.6 Definition of Bonding Energy and Energy Bands |
|
|
41 | (2) |
|
2.7 Band Structure of Fullerenes (Buckyballs) |
|
|
43 | (1) |
|
2.8 Band Structure of Carbon Nanotubes |
|
|
43 | (1) |
|
2.9 Background Needed for Energy Levels and Band Structure |
|
|
44 | (1) |
|
2.9.1 Tight Binding Method |
|
|
44 | (1) |
|
2.9.2 Free Electron Method |
|
|
44 | (1) |
|
|
45 | (1) |
|
2.11 Conclusion: The Future |
|
|
46 | (2) |
|
|
48 | (1) |
|
|
48 | (1) |
|
|
48 | (3) |
|
3 Crystalline Properties of Solids |
|
|
51 | (34) |
|
|
51 | (3) |
|
3.2 Crystal Lattices and the Seven Crystal Systems |
|
|
54 | (2) |
|
3.3 The Unit Cell Concept |
|
|
56 | (2) |
|
3.4 The Wigner-Seitz Cell |
|
|
58 | (1) |
|
|
58 | (1) |
|
|
58 | (9) |
|
3.6.1 Cs Group (Plane Reflection) |
|
|
60 | (1) |
|
3.6.2 Cn Groups (Rotation) |
|
|
61 | (1) |
|
|
62 | (1) |
|
|
62 | (1) |
|
|
62 | (2) |
|
|
64 | (1) |
|
|
64 | (1) |
|
|
65 | (1) |
|
|
66 | (1) |
|
|
66 | (1) |
|
|
67 | (1) |
|
3.6.12 List of Crystallographic Point Groups |
|
|
67 | (1) |
|
|
67 | (1) |
|
3.8 Directions and Planes in Crystals: Miller Indices |
|
|
67 | (5) |
|
3.9 Real Crystal Structures |
|
|
72 | (7) |
|
|
72 | (2) |
|
3.9.2 Zinc Blende Structure |
|
|
74 | (1) |
|
3.9.3 Sodium Chloride Structure |
|
|
75 | (1) |
|
3.9.4 Cesium Chloride Structure |
|
|
75 | (1) |
|
3.9.5 Hexagonal Close-Packed Structure |
|
|
76 | (1) |
|
|
77 | (1) |
|
|
78 | (1) |
|
3.10 The Reciprocal Lattice |
|
|
79 | (3) |
|
|
82 | (1) |
|
|
82 | (1) |
|
|
83 | (1) |
|
|
84 | (1) |
|
4 Introduction to Quantum Mechanics |
|
|
85 | (64) |
|
|
85 | (6) |
|
4.1.1 Blackbody Radiation |
|
|
85 | (2) |
|
4.1.2 The Photoelectric Effect |
|
|
87 | (3) |
|
4.1.3 Wave-Particle Duality |
|
|
90 | (1) |
|
4.1.4 The Davisson-Germer Experiment |
|
|
90 | (1) |
|
4.2 Elements of Quantum Mechanics |
|
|
91 | (9) |
|
|
91 | (2) |
|
4.2.2 General Properties of Wavefunctions and the Schrodinger Equation |
|
|
93 | (1) |
|
4.2.3 The Time-Independent Schrodinger Equation |
|
|
94 | (3) |
|
4.2.4 The Heisenberg Uncertainty Principle |
|
|
97 | (1) |
|
|
98 | (1) |
|
4.2.6 The Heisenberg Equation of Motion |
|
|
99 | (1) |
|
|
100 | (1) |
|
4.4 Simple Quantum Mechanical Systems |
|
|
101 | (8) |
|
|
101 | (1) |
|
|
102 | (1) |
|
4.4.3 Particle in a 1-D Box |
|
|
102 | (2) |
|
4.4.4 Particle in a Finite Potential Well |
|
|
104 | (5) |
|
|
109 | (1) |
|
4.6 The Harmonic Oscillator |
|
|
110 | (1) |
|
|
111 | (12) |
|
4.7.1 Motion in a Spherically Symmetric Potential |
|
|
114 | (2) |
|
|
116 | (2) |
|
4.7.3 The Radial Wavefunction of the Hydrogen Atom |
|
|
118 | (3) |
|
|
121 | (1) |
|
4.7.5 The Two-Dimensional Hydrogen Atom |
|
|
121 | (1) |
|
|
122 | (1) |
|
4.8 Relativity and Quantum Mechanics |
|
|
123 | (5) |
|
4.8.1 The Electron Spin Operator |
|
|
127 | (1) |
|
4.9 The Addition of Angular Momentum |
|
|
128 | (1) |
|
4.10 The Pauli Principle Applied to Many-Electron Systems: The Slater Determinant |
|
|
129 | (1) |
|
|
130 | (1) |
|
4.12 The Electron in a Magnetic Field |
|
|
131 | (3) |
|
4.12.1 Degeneracy of the Landau Levels |
|
|
133 | (1) |
|
|
134 | (1) |
|
4.14 The Wentzel Kramer Brillouin Approximation |
|
|
134 | (3) |
|
4.15 Quantum Mechanical Perturbation Theory |
|
|
137 | (5) |
|
4.15.1 Time-Independent Perturbation |
|
|
137 | (1) |
|
4.15.2 Nondegenerate Perturbation Theory |
|
|
138 | (2) |
|
4.15.3 Degenerate-State Perturbation Theory to Second Order |
|
|
140 | (2) |
|
|
142 | (1) |
|
|
142 | (5) |
|
|
147 | (1) |
|
|
147 | (2) |
|
5 Electrons and Energy Band Structures in Crystals |
|
|
149 | (54) |
|
|
149 | (1) |
|
5.2 Electrons in a Crystal |
|
|
149 | (17) |
|
|
149 | (2) |
|
5.2.2 One-Dimensional Kronig-Penney Model |
|
|
151 | (3) |
|
|
154 | (3) |
|
5.2.4 Nearly Free Electron Approximation |
|
|
157 | (2) |
|
5.2.5 Tight-Binding Approximation |
|
|
159 | (2) |
|
5.2.6 Dynamics of Electrons in a Crystal |
|
|
161 | (2) |
|
|
163 | (2) |
|
5.2.8 Electron Distribution Function |
|
|
165 | (1) |
|
5.3 Density of States (3D) |
|
|
166 | (9) |
|
|
166 | (4) |
|
|
170 | (3) |
|
5.3.3 Electrons and Holes |
|
|
173 | (2) |
|
5.4 Band Structures in Real Semiconductors |
|
|
175 | (6) |
|
5.4.1 First Brillouin Zone of an fee Lattice |
|
|
175 | (2) |
|
5.4.2 First Brillouin Zone of a bec Lattice |
|
|
177 | (1) |
|
5.4.3 First Brillouin Zones of a Few Semiconductors |
|
|
178 | (3) |
|
5.5 Two-Dimensional Semiconductors and Transition Metal Dichalcogenides "TMDC" |
|
|
181 | (8) |
|
5.5.1 Examples: Graphene (G) and TMDC |
|
|
181 | (1) |
|
5.5.2 Graphene Band Structure: Nearest Neighbor Tight Binding |
|
|
181 | (4) |
|
5.5.3 Two-Dimensional Metal-Dichalcogenide TMDC: Electronic Structures |
|
|
185 | (1) |
|
5.5.4 Example: Fabrication of Flexible Transistors |
|
|
186 | (2) |
|
5.5.5 Summary: Discussion |
|
|
188 | (1) |
|
5.6 Band Structures in Metals |
|
|
189 | (2) |
|
5.7 The Kane Effective Mass Method |
|
|
191 | (7) |
|
5.7.1 The Effect of the Spin-Orbit Coupling |
|
|
194 | (4) |
|
|
198 | (1) |
|
|
198 | (2) |
|
|
200 | (1) |
|
|
200 | (3) |
|
6 Phonons and Thermal Properties |
|
|
203 | (48) |
|
6.1 Phonons and Thermal Properties |
|
|
203 | (23) |
|
|
203 | (1) |
|
6.1.2 Interaction of Atoms in Crystals: Origin and Formalism |
|
|
203 | (3) |
|
6.1.3 One-Dimensional Monatomic Harmonic Crystal |
|
|
206 | (4) |
|
6.1.4 One-Dimensional Diatomic Harmonic Crystal |
|
|
210 | (7) |
|
6.1.5 Extension to Three-Dimensional Case |
|
|
217 | (3) |
|
|
220 | (3) |
|
|
223 | (2) |
|
|
225 | (1) |
|
6.2 Thermal Properties of Crystals |
|
|
226 | (20) |
|
|
226 | (1) |
|
6.2.2 Phonon Density of States (Debye Model) |
|
|
226 | (12) |
|
|
238 | (4) |
|
6.2.4 Thermal Conductivity |
|
|
242 | (4) |
|
|
246 | (1) |
|
Problems for Phonons and Thermal Properties |
|
|
246 | (1) |
|
6.3 Problems for Thermal Properties of Crystals |
|
|
247 | (2) |
|
|
249 | (1) |
|
|
249 | (2) |
|
7 Equilibrium Charge Carrier Statistics in Semiconductors |
|
|
251 | (24) |
|
|
251 | (1) |
|
|
251 | (3) |
|
7.3 Effective Density of States (Conduction Band) |
|
|
254 | (4) |
|
7.4 Effective Density of States (Valence Band) |
|
|
258 | (2) |
|
|
260 | (1) |
|
7.6 Doping: Intrinsic Versus Extrinsic Semiconductor |
|
|
261 | (4) |
|
|
265 | (1) |
|
7.8 Fermi Energy as a Function of Temperature |
|
|
266 | (4) |
|
7.9 Carrier Concentration in an n-Type Semiconductor |
|
|
270 | (2) |
|
|
272 | (1) |
|
|
273 | (1) |
|
|
274 | (1) |
|
|
274 | (1) |
|
8 Non-equilibrium Electrical Properties of Semiconductors |
|
|
275 | (44) |
|
|
275 | (1) |
|
8.2 Electrical Conductivity |
|
|
275 | (5) |
|
8.2.1 Ohm's Law in Solids |
|
|
275 | (4) |
|
8.2.2 The Case of Semiconductors |
|
|
279 | (1) |
|
8.3 Carrier Mobility in Solids |
|
|
280 | (2) |
|
|
282 | (5) |
|
8.4.1 P-Type Semiconductor |
|
|
282 | (2) |
|
8.4.2 N-Type Semiconductor |
|
|
284 | (2) |
|
8.4.3 Compensated Semiconductor |
|
|
286 | (1) |
|
8.4.4 Hall Effect with Both Types of Charge Carriers |
|
|
286 | (1) |
|
8.5 Charge Carrier Diffusion |
|
|
287 | (7) |
|
|
288 | (1) |
|
|
289 | (1) |
|
|
290 | (4) |
|
8.6 Carrier Generation and Recombination Mechanisms |
|
|
294 | (14) |
|
|
294 | (1) |
|
8.6.2 Direct Band-to-Band Recombination |
|
|
295 | (3) |
|
8.6.3 Shockley-Read-Hall Recombination |
|
|
298 | (7) |
|
8.6.4 Auger Band-to-Band Recombination |
|
|
305 | (2) |
|
8.6.5 Surface Recombination |
|
|
307 | (1) |
|
|
308 | (2) |
|
8.8 Transport Theory: Beyond Drude |
|
|
310 | (5) |
|
8.8.1 The Boltzmann Equation |
|
|
310 | (4) |
|
8.8.2 Connection to Drude Theory |
|
|
314 | (1) |
|
|
315 | (1) |
|
|
315 | (3) |
|
|
318 | (1) |
|
9 Semiconductor p-n and Metal-Semiconductor Junctions |
|
|
319 | (46) |
|
|
319 | (1) |
|
9.2 Ideal p-n Junction at Equilibrium |
|
|
319 | (12) |
|
|
319 | (1) |
|
9.2.2 Depletion Approximation |
|
|
320 | (4) |
|
9.2.3 Built-in Electric Field |
|
|
324 | (1) |
|
|
325 | (3) |
|
|
328 | (2) |
|
9.2.6 Energy Band Profile and Fermi Energy |
|
|
330 | (1) |
|
9.3 Non-equilibrium Properties of p-n Junctions |
|
|
331 | (18) |
|
9.3.1 Forward Bias: A Qualitative Description |
|
|
332 | (3) |
|
9.3.2 Reverse Bias: A Qualitative Description |
|
|
335 | (1) |
|
9.3.3 A Quantitative Description |
|
|
335 | (4) |
|
9.3.4 Depletion Layer Capacitance |
|
|
339 | (1) |
|
9.3.5 Ideal p-n Junction Diode Equation |
|
|
340 | (7) |
|
9.3.6 Minority and Majority Carrier Currents in Neutral Regions |
|
|
347 | (2) |
|
9.4 Deviations from the Ideal p-n Diode Case |
|
|
349 | (7) |
|
9.4.1 Reverse Bias Deviations from the Ideal Case |
|
|
349 | (2) |
|
9.4.2 Forward Bias Deviations from the Ideal Case |
|
|
351 | (1) |
|
|
352 | (1) |
|
9.4.4 Avalanche Breakdown |
|
|
353 | (2) |
|
|
355 | (1) |
|
9.5 Metal-Semiconductor Junctions |
|
|
356 | (5) |
|
|
356 | (1) |
|
9.5.2 Schottky and Ohmic Contacts |
|
|
357 | (4) |
|
|
361 | (1) |
|
|
361 | (2) |
|
|
363 | (2) |
|
10 Optical Properties of Semiconductors |
|
|
365 | (44) |
|
|
365 | (1) |
|
10.2 The Complex Refractive Index of a Solid |
|
|
366 | (5) |
|
10.2.1 Maxwell's Equations |
|
|
366 | (3) |
|
|
369 | (1) |
|
10.2.3 Transmission Through a Thin Slab |
|
|
370 | (1) |
|
10.3 The Free Carrier Contribution to the Complex Refractive Index |
|
|
371 | (4) |
|
10.3.1 The Drude Theory of Conductivity |
|
|
371 | (3) |
|
10.3.2 The Classical and Quantum Conductivity |
|
|
374 | (1) |
|
10.4 The Bound and Valence Electron Contributions to the Permittivity |
|
|
375 | (8) |
|
10.4.1 Time-Dependent Perturbation Theory |
|
|
375 | (4) |
|
10.4.2 Real Transitions and Absorption of Light |
|
|
379 | (2) |
|
10.4.3 The Permittivity of a Semiconductor |
|
|
381 | (1) |
|
10.4.4 The Effect of Bound Electrons on the Low-Frequency Optical Properties |
|
|
382 | (1) |
|
10.5 The Optical Absorption in Semiconductors |
|
|
383 | (5) |
|
10.5.1 Absorption Coefficient |
|
|
383 | (2) |
|
|
385 | (2) |
|
10.5.3 Direct and Indirect Bandgap Absorption |
|
|
387 | (1) |
|
10.6 The Effect of Phonons on the Permittivity |
|
|
388 | (5) |
|
10.6.1 Photon Polar Mode Coupling |
|
|
388 | (3) |
|
10.6.2 Application to Ionic Insulators |
|
|
391 | (1) |
|
10.6.3 The Phonon-Polariton |
|
|
392 | (1) |
|
10.7 Free Electrons in Static Electric Fields: The Franz-Keldysh Effect |
|
|
393 | (4) |
|
10.8 Nearly Free Electrons in a Magnetic Field |
|
|
397 | (6) |
|
10.9 Nonlinear Optical Susceptibility |
|
|
403 | (1) |
|
|
404 | (1) |
|
|
405 | (1) |
|
|
406 | (1) |
|
|
407 | (2) |
|
11 Solar Energy Harvesting |
|
|
409 | (12) |
|
11.1 Photovoltaic Cells (PVC) Introduction |
|
|
409 | (1) |
|
11.2 Examples of Photodiodes |
|
|
410 | (1) |
|
11.3 The Current Voltage Characteristic of a Solar Cell |
|
|
410 | (3) |
|
11.3.1 Solar Cell IV Characteristic Curve |
|
|
412 | (1) |
|
11.4 General Expression for the Quantum Efficiency |
|
|
413 | (2) |
|
11.5 Some Definitions, Power Collected |
|
|
415 | (2) |
|
11.6 Complete Mathematical Expression for the Quantum Efficiency |
|
|
417 | (1) |
|
|
418 | (1) |
|
|
419 | (1) |
|
References and Further Reading |
|
|
419 | (2) |
|
12 Thermal and Photothermal Energy Harvesting |
|
|
421 | (26) |
|
|
421 | (5) |
|
|
422 | (1) |
|
12.1.2 The Thermoelectric Effect |
|
|
422 | (3) |
|
12.1.3 The Thermoelectric Voltage |
|
|
425 | (1) |
|
12.2 Seebeck Coefficient of a Free Electron Gas |
|
|
426 | (1) |
|
12.3 The Seebeck Coefficient of an Undoped Semiconductor |
|
|
426 | (1) |
|
12.4 Doped Semiconductors |
|
|
426 | (1) |
|
12.5 Seebeck Coefficient and Conductivity of a Hopping Conductor, i.e., Amorphous Silicon |
|
|
426 | (3) |
|
|
429 | (8) |
|
12.6.1 Thermoelectric Efficiency |
|
|
429 | (2) |
|
12.6.2 Thermal Conductivity |
|
|
431 | (1) |
|
12.6.3 Thermal Conduction in the Diffusive Limit of Phonon Transport |
|
|
432 | (4) |
|
12.6.4 Phonon Contribution to Thermal Transport at Room T |
|
|
436 | (1) |
|
12.6.5 Electron Contribution for a Metal at Room T (Cp,e Is the Electronic Specific Heat) |
|
|
436 | (1) |
|
12.7 Summary: Typical Thermoelectric Generator |
|
|
437 | (1) |
|
12.8 Application to Cooling |
|
|
437 | (2) |
|
12.9 Materials Old and New |
|
|
439 | (5) |
|
12.9.1 Properties Which Make a Thermoelectric Material Efficient |
|
|
439 | (1) |
|
12.9.2 Low-Dimensional Structures |
|
|
440 | (2) |
|
12.9.3 Advantages of Lower Dimensionality |
|
|
442 | (1) |
|
|
443 | (1) |
|
References and Further Reading |
|
|
444 | (3) |
|
|
447 | (14) |
|
13.1 Photothermal Harvesting Using Photonic Crystal Conversion of Blackbody Heat into High-Energy Photons |
|
|
447 | (3) |
|
13.2 Dichalcogenides: From Monolayers to Nanotubes |
|
|
450 | (1) |
|
13.3 Special Case: Graphene |
|
|
451 | (1) |
|
13.4 Thermoelectric Mapping Graphene |
|
|
452 | (1) |
|
|
453 | (1) |
|
13.6 Organic Materials: Single Molecule Junctions |
|
|
453 | (1) |
|
13.7 Many-Electron Thermopower: The Effect of Electron Correlations |
|
|
454 | (2) |
|
|
454 | (2) |
|
13.8 Material with Metal Insulator MI Transitions, Example VO2 Phase |
|
|
456 | (1) |
|
|
457 | (2) |
|
|
459 | (1) |
|
|
459 | (1) |
|
References and Further Reading |
|
|
460 | (1) |
|
14 Electron-Electron Interactions: Screening |
|
|
461 | (12) |
|
|
461 | (3) |
|
|
464 | (1) |
|
14.3 Screening in a Semiconductor |
|
|
465 | (3) |
|
14.4 Screening in a 2-Dimensional System |
|
|
468 | (1) |
|
|
469 | (1) |
|
|
470 | (1) |
|
|
471 | (1) |
|
|
471 | (1) |
|
|
471 | (1) |
|
|
472 | (1) |
|
15 Semiconductor Heterostructures and Low-Dimensional Quantum Structures |
|
|
473 | (40) |
|
|
473 | (1) |
|
|
474 | (1) |
|
|
474 | (1) |
|
15.2.2 Type II Alignments |
|
|
475 | (1) |
|
15.3 Application of Model Solid Theory |
|
|
475 | (2) |
|
15.4 Anderson Model for Heterojunctions |
|
|
477 | (3) |
|
15.5 Multiple Quantum Wells and Superlattices |
|
|
480 | (1) |
|
15.6 Two-Dimensional Structures: Quantum Wells |
|
|
481 | (7) |
|
|
481 | (3) |
|
|
484 | (3) |
|
15.6.3 The Influence of an Effective Mass |
|
|
487 | (1) |
|
15.7 One-Dimensional Structures: Quantum Wires |
|
|
488 | (4) |
|
|
488 | (2) |
|
15.7.2 Infinitely Deep Rectangular Wires |
|
|
490 | (2) |
|
15.8 Zero-Dimensional Structures: Quantum Dots |
|
|
492 | (2) |
|
|
492 | (1) |
|
15.8.2 Infinite Spherical Quantum Dot |
|
|
493 | (1) |
|
15.9 Optical Properties of Low-Dimensional Structures |
|
|
494 | (5) |
|
15.9.1 Interband Absorption Coefficients of Quantum |
|
|
495 | (3) |
|
15.9.2 Absorption Coefficient of Quantum Wires |
|
|
498 | (1) |
|
15.9.3 Absorption Coefficient of Quantum Dots |
|
|
499 | (1) |
|
15.10 Examples of Low-Dimensional Structures |
|
|
499 | (9) |
|
|
501 | (2) |
|
|
503 | (2) |
|
15.10.3 Effect of Electric and Magnetic Fields |
|
|
505 | (3) |
|
|
508 | (1) |
|
|
508 | (3) |
|
|
511 | (1) |
|
|
511 | (2) |
|
|
513 | (42) |
|
|
513 | (31) |
|
16.1.1 The Concept of Current in Quantum Mechanics |
|
|
513 | (2) |
|
16.1.2 Transmission and Reflection Coefficients |
|
|
515 | (3) |
|
|
518 | (1) |
|
16.1.4 The Electrical Resistance Due to Potential Barriers in Quantum Mechanics |
|
|
519 | (1) |
|
16.1.5 The Influence of the Applied Electric Field |
|
|
520 | (1) |
|
16.1.6 Resonant Tunneling Over a Double Barrier |
|
|
521 | (5) |
|
16.1.7 The Superlattice Dispersion |
|
|
526 | (2) |
|
16.1.8 The Stark-Wannier States |
|
|
528 | (3) |
|
16.1.9 Quantum Transport in Two-Dimensional Channels |
|
|
531 | (3) |
|
16.1.10 Motion in the Plane: Magnetoresistance and Hall Effect in Two-Dimensional Electron Gas |
|
|
534 | (6) |
|
16.1.11 The Fractional Quantum Hall Effect |
|
|
540 | (2) |
|
16.1.12 Landau-Stark-Wannier States |
|
|
542 | (1) |
|
16.1.13 The Effective Mass of Carriers: Cyclotron Resonance |
|
|
542 | (1) |
|
|
543 | (1) |
|
16.2 Electron-Phonon Interactions |
|
|
544 | (7) |
|
|
544 | (6) |
|
16.2.2 The Polaron Effective Mass and Energy |
|
|
550 | (1) |
|
|
551 | (1) |
|
Problems for Quantum Transport |
|
|
551 | (1) |
|
Problems for Electron-Phonon Interactions |
|
|
552 | (1) |
|
|
552 | (1) |
|
|
553 | (2) |
|
17 Compound Semiconductors and Crystal Growth Techniques |
|
|
555 | (42) |
|
|
555 | (1) |
|
17.2 III-V Semiconductor Alloys |
|
|
556 | (5) |
|
17.2.1 III-V Binary Compounds |
|
|
556 | (1) |
|
17.2.2 III-V Ternary Compounds |
|
|
556 | (2) |
|
17.2.3 III-V Quaternary Compounds |
|
|
558 | (3) |
|
17.3 II-VI Compound Semiconductors |
|
|
561 | (1) |
|
17.4 Bulk Single Crystal Growth Techniques |
|
|
562 | (9) |
|
17.4.1 Czochralski Growth Method |
|
|
562 | (3) |
|
17.4.2 Bridgman Growth Method |
|
|
565 | (1) |
|
17.4.3 Float-Zone Crystal Growth Method |
|
|
566 | (2) |
|
17.4.4 Lely Growth Method |
|
|
568 | (2) |
|
17.4.5 Crystal Wafer Fabrication |
|
|
570 | (1) |
|
17.5 Epitaxial Growth Techniques |
|
|
571 | (16) |
|
17.5.1 Liquid-Phase Epitaxy |
|
|
571 | (2) |
|
17.5.2 Vapor-Phase Epitaxy |
|
|
573 | (3) |
|
17.5.3 Metalorganic Chemical Vapor Deposition |
|
|
576 | (5) |
|
17.5.4 Molecular Beam Epitaxy |
|
|
581 | (5) |
|
17.5.5 Other Epitaxial Growth Techniques |
|
|
586 | (1) |
|
17.5.6 Ex Situ Characterization of Epitaxial Thin Films |
|
|
587 | (1) |
|
17.6 Thermodynamics and Kinetics of Growth |
|
|
587 | (5) |
|
|
587 | (1) |
|
17.6.2 Feasibility of Chemical Reactions |
|
|
588 | (2) |
|
|
590 | (1) |
|
|
590 | (2) |
|
|
592 | (1) |
|
|
593 | (1) |
|
|
594 | (1) |
|
|
595 | (1) |
|
|
596 | (1) |
|
18 Semiconductor Characterization Techniques |
|
|
597 | (26) |
|
|
597 | (1) |
|
18.2 Structural Characterization Techniques |
|
|
597 | (13) |
|
|
597 | (3) |
|
18.2.2 Electron Microscopy |
|
|
600 | (3) |
|
18.2.3 Energy Dispersive Analysis Using X-rays (EDX) |
|
|
603 | (1) |
|
18.2.4 Auger Electron Spectroscopy (AES) |
|
|
603 | (1) |
|
18.2.5 X-ray Photoelectron Spectroscopy (XPS) |
|
|
604 | (2) |
|
18.2.6 Secondary-Ion Mass Spectroscopy (SIMS) |
|
|
606 | (1) |
|
18.2.7 Rutherford Backscattering (RBS) |
|
|
606 | (2) |
|
18.2.8 Scanning Probe Microscopy (SPM) |
|
|
608 | (2) |
|
18.3 Optical Characterization Techniques |
|
|
610 | (5) |
|
18.3.1 Photoluminescence Spectroscopy |
|
|
610 | (1) |
|
18.3.2 Cathodoluminescence Spectroscopy |
|
|
611 | (1) |
|
18.3.3 Reflectance Measurement |
|
|
611 | (1) |
|
18.3.4 Absorbance Measurement |
|
|
611 | (1) |
|
|
612 | (1) |
|
18.3.6 Raman Spectroscopy |
|
|
613 | (1) |
|
18.3.7 Fourier Transform Spectroscopy |
|
|
613 | (2) |
|
18.4 Electrical Characterization Techniques |
|
|
615 | (3) |
|
|
615 | (1) |
|
|
616 | (1) |
|
18.4.3 Capacitance Techniques |
|
|
616 | (1) |
|
18.4.4 Electrochemical Capacitance-Voltage Profiling |
|
|
617 | (1) |
|
|
618 | (1) |
|
|
619 | (2) |
|
|
621 | (1) |
|
|
621 | (2) |
|
|
623 | (18) |
|
|
623 | (2) |
|
|
625 | (4) |
|
19.2.1 Intrinsic Point Defects |
|
|
625 | (2) |
|
19.2.2 Extrinsic Point Defects |
|
|
627 | (2) |
|
|
629 | (3) |
|
|
632 | (4) |
|
|
636 | (1) |
|
19.6 Defect Characterization |
|
|
637 | (1) |
|
19.7 Defects Generated During Semiconductor Crystal Growth |
|
|
638 | (1) |
|
|
638 | (1) |
|
|
638 | (1) |
|
|
639 | (1) |
|
|
640 | (1) |
Appendices |
|
641 | (42) |
Index |
|
683 | |