Preface |
|
xiii | |
Acknowledgments |
|
xix | |
Credits |
|
xxi | |
1 Introduction |
|
1 | (10) |
|
Motivation: Why Experiment? |
|
|
1 | (1) |
|
Steps in an Experimental Program |
|
|
2 | (2) |
|
|
2 | (1) |
|
|
3 | (1) |
|
|
4 | (1) |
|
|
5 | (4) |
|
|
9 | (1) |
|
|
10 | (1) |
|
|
10 | (1) |
2 Fundamentals of Experimental Design |
|
11 | (18) |
|
|
11 | (2) |
|
|
13 | (7) |
|
|
13 | (2) |
|
Blocks and block structures |
|
|
15 | (2) |
|
Treatments and treatment structures |
|
|
17 | (2) |
|
|
19 | (1) |
|
Principles of Experimental Design |
|
|
20 | (7) |
|
|
21 | (1) |
|
|
22 | (2) |
|
|
24 | (2) |
|
|
26 | (1) |
|
|
27 | (1) |
|
|
27 | (2) |
3 Fundamentals of Statistical Data Analysis |
|
29 | (62) |
|
|
29 | (1) |
|
|
30 | (26) |
|
|
30 | (1) |
|
|
31 | (3) |
|
|
34 | (1) |
|
Probability and probability distributions |
|
|
34 | (2) |
|
|
36 | (2) |
|
Misinterpretation of P-values |
|
|
38 | (1) |
|
|
39 | (1) |
|
Normal distribution theory t-test |
|
|
40 | (6) |
|
Summary and discussion: Significance tests |
|
|
46 | (2) |
|
Economic analysis: The bigger picture |
|
|
48 | (2) |
|
Statistical confidence intervals |
|
|
50 | (3) |
|
|
53 | (1) |
|
Why calculate statistical confidence limits? |
|
|
54 | (1) |
|
Sample size determination |
|
|
54 | (2) |
|
Tomato Fertilizer Experiment |
|
|
56 | (3) |
|
|
56 | (1) |
|
Analysis 1: Plot the data |
|
|
56 | (2) |
|
The value of randomization |
|
|
58 | (1) |
|
The importance of ancillary data |
|
|
59 | (1) |
|
|
59 | (18) |
|
Analysis 1: Plot the data |
|
|
59 | (3) |
|
|
62 | (1) |
|
|
63 | (1) |
|
|
64 | (2) |
|
|
66 | (3) |
|
|
69 | (2) |
|
Determining the size of an experiment |
|
|
71 | (6) |
|
Comparing Standard Deviations |
|
|
77 | (2) |
|
|
79 | (1) |
|
Appendix 3.A The Binomial Distribution |
|
|
79 | (2) |
|
Appendix 3.B Sampling from a Normal Distribution |
|
|
81 | (4) |
|
Appendix 3.C Statistical Underpinnings |
|
|
85 | (4) |
|
|
86 | (1) |
|
|
87 | (2) |
|
|
89 | (1) |
|
|
89 | (2) |
4 Completely Randomized Design |
|
91 | (32) |
|
|
91 | (1) |
|
|
92 | (1) |
|
CRD: Single Qualitative Factor |
|
|
92 | (3) |
|
|
92 | (3) |
|
|
95 | (8) |
|
|
96 | (1) |
|
|
97 | (1) |
|
|
98 | (1) |
|
|
99 | (1) |
|
|
100 | (1) |
|
|
101 | (2) |
|
Testing the Assumptions of Equal Variances and Normality |
|
|
103 | (1) |
|
|
103 | (2) |
|
|
105 | (1) |
|
Statistical Prediction Interval |
|
|
105 | (1) |
|
Example: Tomato Fertilizer Experiment Revisited |
|
|
106 | (1) |
|
Sizing a Completely Randomized Experiment |
|
|
107 | (1) |
|
CRD: Single Quantitative Factor |
|
|
107 | (6) |
|
Example: Growth rate of rats |
|
|
108 | (1) |
|
|
109 | (1) |
|
|
109 | (2) |
|
|
111 | (2) |
|
|
113 | (1) |
|
Enhanced Case Study: Power Window Gear Teeth |
|
|
114 | (6) |
|
|
117 | (2) |
|
|
119 | (1) |
|
|
120 | (1) |
|
|
120 | (1) |
|
|
121 | (2) |
5 Completely Randomized Design with Multiple Treatment Factors |
|
123 | (54) |
|
|
123 | (1) |
|
|
124 | (1) |
|
Example 1 (Two qualitative factors): Poisons and antidotes |
|
|
124 | (25) |
|
Analysis 1: Plot the data |
|
|
126 | (1) |
|
|
126 | (2) |
|
|
128 | (2) |
|
|
130 | (1) |
|
Generalizing the ANOVA for a CRD with two factors |
|
|
131 | (1) |
|
Antidote B versus Antidote D |
|
|
132 | (1) |
|
|
133 | (2) |
|
|
135 | (1) |
|
Probability estimation and tolerance intervals |
|
|
136 | (2) |
|
|
138 | (1) |
|
Example 2 (Two quantitative factors): Ethanol blends and CO emissions |
|
|
139 | (3) |
|
|
142 | (2) |
|
|
144 | (1) |
|
Regression analysis and ANOVA |
|
|
145 | (3) |
|
|
148 | (1) |
|
|
149 | (6) |
|
Extensions: More than two treatment factors |
|
|
150 | (1) |
|
Example 3: Poison/antidote experiment extended |
|
|
151 | (3) |
|
Example 4: Ethanol experiment extended |
|
|
154 | (1) |
|
Special Case: Two-Level Factorial Experiments |
|
|
155 | (12) |
|
Example 5: Pot production |
|
|
156 | (2) |
|
Analysis 1: Look at the data |
|
|
158 | (1) |
|
Analysis 2: Regression analysis |
|
|
159 | (3) |
|
Analysis 2: Stepwise regression |
|
|
162 | (1) |
|
Analysis 3: "Effect sparsity" and graphical analysis |
|
|
162 | (5) |
|
Fractional Two-Level Factorials |
|
|
167 | (8) |
|
Example 6: E-mail marketing |
|
|
167 | (1) |
|
One-factor-at-a-time designs |
|
|
168 | (2) |
|
Results: E-mail experiment |
|
|
170 | (1) |
|
Example 7: Flower pot experiment revisited |
|
|
171 | (4) |
|
|
175 | (1) |
|
|
175 | (1) |
|
|
175 | (2) |
6 Randomized Complete Block Design |
|
177 | (30) |
|
|
177 | (1) |
|
|
178 | (10) |
|
RBD with replication: Example 1battery experiment |
|
|
179 | (1) |
|
Analysis 1: Plot the data |
|
|
180 | (1) |
|
|
181 | (2) |
|
|
183 | (1) |
|
|
184 | (1) |
|
Bringing subject-matter knowledge to bear |
|
|
185 | (2) |
|
Example 2: More tomato fertilizer experiments |
|
|
187 | (1) |
|
Example 3: More gear teeth experiments |
|
|
188 | (1) |
|
RBD with Single Replication |
|
|
188 | (6) |
|
Example 4: Penicillin production |
|
|
189 | (2) |
|
|
191 | (3) |
|
Sizing a Randomized Block Experiment |
|
|
194 | (1) |
|
|
195 | (4) |
|
|
195 | (1) |
|
Example 6: Battery experiment revisited |
|
|
196 | (1) |
|
Example 7: Boys' shoes revisited |
|
|
197 | (2) |
|
|
199 | (3) |
|
Multifactor treatments and blocks-example: Penicillin experiment extended |
|
|
199 | (2) |
|
Example 8: A blocks-only "experiment"-textile production |
|
|
201 | (1) |
|
Analysis 1: Plot the data |
|
|
201 | (1) |
|
|
202 | (1) |
|
Balanced Incomplete Block Designs |
|
|
203 | (2) |
|
Example: Boys' shoes revisited again |
|
|
203 | (2) |
|
|
205 | (1) |
|
|
205 | (1) |
|
|
205 | (2) |
7 Other Experimental Designs |
|
207 | (38) |
|
|
207 | (1) |
|
|
208 | (10) |
|
Example: Gasoline additives and car emissions |
|
|
208 | (4) |
|
Analysis 1: Plot the data |
|
|
212 | (2) |
|
|
214 | (1) |
|
|
215 | (1) |
|
|
216 | (1) |
|
|
216 | (1) |
|
|
217 | (1) |
|
|
218 | (12) |
|
Example: Corrosion Resistance |
|
|
220 | (2) |
|
Analysis 1: Plot the data |
|
|
222 | (3) |
|
|
225 | (3) |
|
|
228 | (2) |
|
Repeated Measures Designs |
|
|
230 | (5) |
|
Example: Effects of drugs on heart rate |
|
|
231 | (1) |
|
Analysis 1: Plot the data |
|
|
232 | (2) |
|
|
234 | (1) |
|
|
235 | (1) |
|
|
235 | (5) |
|
|
235 | (1) |
|
|
235 | (3) |
|
Mathematical model: Robustness |
|
|
238 | (1) |
|
|
239 | (1) |
|
|
240 | (3) |
|
|
240 | (1) |
|
Finding "optimal experimental designs" |
|
|
240 | (2) |
|
|
242 | (1) |
|
|
243 | (1) |
|
|
243 | (2) |
Index |
|
245 | |