Atjaunināt sīkdatņu piekrišanu

E-grāmata: Future of Pharmaceuticals: A Nonlinear Analysis

(Therapeutic Proteins International, LLC, USA)
  • Formāts: 620 pages
  • Izdošanas datums: 28-Feb-2022
  • Izdevniecība: CRC Press
  • Valoda: eng
  • ISBN-13: 9781000458268
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 137,75 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 620 pages
  • Izdošanas datums: 28-Feb-2022
  • Izdevniecība: CRC Press
  • Valoda: eng
  • ISBN-13: 9781000458268
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The Future of Pharmaceuticals: A Nonlinear Analysis provides an opportunity to understand the non-linearity of biological systems and its application in various areas of science, primarily pharmaceutical sciences. This book will benefit professionals in pharmaceutical industries, academia, and policy.



Before now, biological systems could only be expressed in terms of linear relationships, however, as knowledge grows and new techniques of analysis on biological systems is made available, we are realizing the non-linearity of these systems. The concepts and techniques of nonlinear analysis allow for more realistic and accurate models in science. The Future of Pharmaceuticals: A Nonlinear Analysis provides an opportunity to understand the non-linearity of biological systems and its application in various areas of science, primarily pharmaceutical sciences. This book will benefit professionals in pharmaceutical industries, academia, and policy who are interested in an entirely new approach to how we will treat disease in the future.

Key Features:

  • Addresses a new approach of nonlinear analysis.
  • Applies a theory of projection to chalk out the future, instead of basing on linear evolution. Provides an opportunity to better understand the non-linearity in biological systems and its applications in various areas of science, primarily pharmaceutical sciences.
  • Helps change the thought process for those looking for answers to their questions which they do not find in the linear relationship approach.
  • Encourages a broader perspective for the creative process of drug development.
Preface xix
Acknowledgments xxvii
Author xxix
List of Important Terminology xxxi
1 Understanding Nonlinearity 1(22)
1.1 Background
1(2)
1.2 Predictions
3(5)
1.2.1 Examples
5(3)
1.3 Modeling Systems
8(12)
1.3.1 Bayes' Theorem
10(7)
1.3.1.1 Phases of Paradigm Shift
14(3)
1.3.2 Future Shifts
17(3)
1.4 Conclusion
20(1)
Additional Reading
20(3)
2 The Evolution of Pharmaceuticals 23(46)
2.1 Background
23(1)
2.2 The Pre-Historical Era
24(1)
2.3 The New World Era
25(1)
2.4 The Regulatory Era
26(2)
2.5 The Legal Era
28(1)
2.6 The Gene Era
29(2)
2.6.1 The Biological Medicine Era
29(2)
2.6.2 Nobel Prizes
31(1)
2.7 The Future Era
31(7)
2.8 New Entities
38(3)
2.8.1 A Special Case
39(2)
2.9 Conclusion
41(1)
2.10 Appendix: New Molecular Entities Approved by the FDA 2011-2020
41(15)
Additional Reading
56(13)
3 Artificial Intelligence 69(22)
3.1 Background
69(2)
3.2 Bioinformatics
71(2)
3.3 Artificial Intelligence
73(1)
3.4 Deep Learning Architecture
73(1)
3.4.1 Graph Representation Learning
74(1)
3.5 Repurposing
74(1)
3.6 Data and Model Harmonization
75(1)
3.7 Drug Discovery and Development
76(7)
3.7.1 Stepwise Approach
78(1)
3.7.2 Application Types
79(3)
3.7.3 An Example of AI Application
82(1)
3.8 AI Tools
83(3)
3.9 Conclusion
86(3)
Additional Reading
89(2)
4 Drug Discovery Trends 91(52)
4.1 Background
91(1)
4.2 High-Throughput Screening (HTS)
91(21)
4.2.1 Phenotypic Screening
94(1)
4.2.2 Modeling
94(1)
4.2.3 Screening Using Fragments (FBS)
95(1)
4.2.4 Ligandomics
95(1)
4.2.5 Gene-Based Testing
95(2)
4.2.6 Target Identification
97(17)
4.2.6.1 Hit Identification
98(11)
4.2.6.2 Hit to Lead
109(1)
4.2.6.3 Target Validation and Efficacy
109(1)
4.2.6.4 Cell-Based Models
110(1)
4.2.6.5 In Vivo Testing
111(1)
4.3 Structural Biology
112(2)
4.4 Hit Optimization
114(4)
4.4.1 PK-PD Relationship
115(3)
4.5 Chemistry and Formulation
118(3)
4.5.1 Lipinski's Rule of Five (R05)
119(2)
4.6 Safety Testing
121(3)
4.6.1 Animal Models
122(1)
4.6.2 Replacing Animal Testing
123(1)
4.7 Synthetic Biology
124(1)
4.8 Libraries
125(3)
4.8.1 DNA Libraries
126(2)
4.9 Microphysiometry
128(4)
4.9.1 Microfluidics
129(1)
4.9.2 Organs-on-a-Chip (00C)
129(1)
4.9.3 Brain-on-a-Chip
129(1)
4.9.4 Lung-on-a-Chip
130(1)
4.9.5 Heart-on-a-Chip
130(1)
4.9.6 Kidney-on-a-Chip
130(1)
4.9.7 Nephron-on-a-Chip
130(1)
4.9.8 Vessel-on-a-Chip
131(1)
4.9.9 Skin-on-a-Chip
131(1)
4.9.10 Human-on-a-Chip
131(1)
4.10 Clinical Trials
132(5)
4.10.1 Biomarkers
133(10)
4.10.1.1 BEST
136(1)
4.11 Exploratory IND
137(2)
4.12 Repurposing
139(1)
4.13 Orphan Drugs
140(1)
4.14 Conclusion
141(1)
Additional Reading
141(2)
5 Drug Development Assays 143(52)
5.1 Background
143(1)
5.1.1 Assay Optimization
143(1)
5.2 Assay Development and Validation
144(3)
5.2.1 Pre-Study Validation
145(1)
5.2.2 In-Study Validation
146(1)
5.2.3 Cross-Validation
146(1)
5.2.4 Critical Path
146(1)
5.3 Receptor Binding Assays in HTS
147(3)
5.3.1 Scintillation Proximity Assays (SPA)
147(2)
5.3.2 Filtration Assays
149(1)
5.4 In Vitro Biochemical Assays
150(11)
5.4.1 Definitions
150(1)
5.4.2 Signs of Enzymatic Contamination
151(1)
5.4.3 Solutions for Enzymatic Contamination
152(1)
5.4.4 Batch Testing
152(3)
5.4.4.1 Identity and Mass Purity
152(1)
5.4.4.2 Methods for Confirming Identity and Mass Purity
152(1)
5.4.4.3 Protein Stain of SDS-PAGE
153(1)
5.4.4.4 Western Blot with the Specific Antibody
153(1)
5.4.4.5 Analytical Gel Filtration
153(1)
5.4.4.6 Reversed-Phase HPLC
153(1)
5.4.4.7 Mass Spectrometry
153(1)
5.4.4.8 Whole Mass for Protein
153(1)
5.4.4.9 Peptide Mass Finger Printing
154(1)
5.4.4.10 Edman Sequencing
154(1)
5.4.4.11 Crude Enzyme Preparations
154(1)
5.4.4.12 Commercial Enzymes
154(1)
5.4.4.13 Co-Purification of Contaminating Enzymes
154(1)
5.4.4.14 Mock Parallel Purification
154(1)
5.4.4.15 Reversal of Enzyme Activity
155(1)
5.4.5 Detecting Enzyme Impurities
155(1)
5.4.5.1 Consequences of Substrate Selectivity
155(1)
5.4.5.2 Substrate Km
155(1)
5.4.5.3 Enzyme Concentration
156(1)
5.4.5.4 Format Selection
156(1)
5.4.6 Validating Enzymatic Purity
156(3)
5.4.6.1 Inhibitor-Based Studies
156(1)
5.4.6.2 IC50 Value
157(1)
5.4.6.3 Hill slope
157(2)
5.4.7 Substrate-Based Studies
159(2)
5.4.7.1 Substrate Km Determination
159(1)
5.4.7.2 Substrate Selectivity Studies
159(1)
5.4.7.3 Comparison Studies
160(1)
5.4.7.4 Enzyme Source
160(1)
5.4.7.5 Format Comparison
160(1)
5.5 Enzymatic Assays for HTS
161(6)
5.5.1 Basic Concept
161(1)
5.5.1.1 Initial Velocity
161(1)
5.5.2 Reagents and Method Development
162(5)
5.5.2.1 Detection System Linearity
162(1)
5.5.2.2 Enzyme Reaction Progress Curve
163(1)
5.5.2.3 Measuring the Initial Velocity of an Enzyme Reaction
163(1)
5.5.2.4 Measurement of Km and Vmax
163(1)
5.5.2.5 What Does the Km Mean?
163(1)
5.5.2.6 How to Measure Km
164(1)
5.5.2.7 Determination of IC50 for Inhibitors
165(1)
5.5.2.8 Optimization Experiments
166(1)
5.6 ELISA-Type Assays
167(10)
5.6.1 Basic Concept
167(1)
5.6.2 General Considerations
167(2)
5.6.2.1 Assay Design and Development
168(1)
5.6.3 Fluorescence Polarization/Anisotropy
169(3)
5.6.3.1 Assay Design
170(2)
5.6.4 Fluorescent/Forster Resonance Energy Transfer and Time-Resolved (TR) FRET
172(1)
5.6.5 AlphaScreen Format
173(5)
5.6.5.1 Optical Biosensors
175(1)
5.6.5.2 Nuclear Magnetic Resonance (NMR)
175(1)
5.6.5.3 Isothermal Calorimetry (ITC)
175(1)
5.6.5.4 Sedimentation Analysis (SA; Analytical Ultracentrifugation)
176(1)
5.6.5.5 X-Ray Crystallography
176(1)
5.7 In Vitro Toxicity and Drug Efficacy Testing
177(1)
5.8 In Vivo Assay Validation
178(4)
5.8.1 General Concepts
179(1)
5.8.1.1 Pre-Study Validation
179(1)
5.8.1.2 In-Study Validation
179(1)
5.8.1.3 Cross-Validation
179(1)
5.8.1.4 Resources
179(1)
5.8.2 Assay Validation Procedures
180(2)
5.8.2.1 Pre-Study Validation
181(1)
5.9 Pharmacokinetics and Drug Metabolism
182(7)
5.9.1 In Vitro Analysis
183(24)
5.9.1.1 Lipophilicity
183(1)
5.9.1.2 Solubility
184(1)
5.9.1.3 Hepatic Microsome Stability
184(1)
5.9.1.4 Plasma Stability
185(1)
5.9.1.5 Plasma Protein Binding
185(1)
5.9.1.6 Screening Cytotoxicity and Hepatotoxicity Test
186(1)
5.9.1.7 CYP450 Inhibition Profiling
187(1)
5.9.1.8 Permeability
188(1)
5.10 Conclusion
189(1)
Additional Reading
189(6)
6 Nanomedicine 195(36)
6.1 Background
195(2)
6.2 Delivery Routes
197(2)
6.3 Liposomes
199(1)
6.4 Dendrimers
200(1)
6.5 Polymers
200(3)
6.6 Metal Particles
203(1)
6.7 Quantum Dots
203(1)
6.8 Fullerenes
204(1)
6.9 Theranostics
204(2)
6.10 Diagnostics
206(1)
6.11 Specific Diseases
207(4)
6.11.1 IBD
207(1)
6.11.2 Diabetes
207(1)
6.11.3 Cancer
207(4)
6.12 Regulatory
211(1)
Additional Reading
211(20)
7 Antimicrobials 231(20)
7.1 Background
231(1)
7.2 Eradicable Diseases
232(2)
7.2.1 Polio
232(1)
7.2.2 Guinea Worm Disease (Dracunculiasis)
232(1)
7.2.3 Lymphatic Filariasis
232(1)
7.2.4 Measles, Mumps, and Rubella
232(1)
7.2.5 Cysticercosis
233(1)
7.2.6 Yaws
233(1)
7.2.7 Trachoma
233(1)
7.2.8 Onchocerciasis
233(1)
7.2.9 Malaria
234(1)
7.3 Vaccines
234(1)
7.3.1 Live-Attenuated Vaccines
234(1)
7.3.2 Inactivated Vaccines
234(1)
7.3.3 Subunit, Recombinant, Polysaccharide, and Conjugate Vaccines
234(1)
7.3.4 Toxoid Vaccines
234(1)
7.3.5 Nucleic Acid Vaccines
234(1)
7.4 Antibiotics
235(9)
7.4.1 Antibiotic Discovery
235(5)
7.4.1.1 Semi-Synthetic
236(1)
7.4.1.2 Synthetic
236(2)
7.4.1.3 Genomic Approaches
238(2)
7.4.2 Reverse Genomics: Revival of Cell-Based Screening
240(1)
7.4.3 Post-Genomics
241(5)
7.4.3.1 Transcriptomics, Proteomics, and Lipidomics
241(1)
7.4.3.2 Metabolomics to Meta-Omics
242(2)
7.5 Phage Therapy
244(2)
7.6 Microbiome
246(2)
7.6.1 Impact on Health
246(1)
7.6.2 Drug Metabolism
247(1)
7.6.3 Drug Toxicity
247(1)
7.6.4 Biomarkers
248(1)
7.7 Conclusion
248(1)
Additional Reading
248(3)
8 Therapeutic Proteins 251(56)
8.1 Background
251(1)
8.2 Protein Structure and Properties
251(10)
8.2.1 Primary Structure
252(3)
8.2.2 Secondary Structure
255(1)
8.2.2.1 Alpha Helix
256(1)
8.2.2.2 Beta-Sheet
256(1)
8.2.3 Tertiary Structure
256(1)
8.2.4 Quaternary Structure
257(1)
8.2.5 Post-Translational Modification (PTM)
257(4)
8.2.6 Association and Aggregation
261(1)
8.3 Non-Antibody Therapeutic Proteins
261(3)
8.3.1 Hormone Peptide Drugs
262(1)
8.3.2 Human Hematopoietic Factor
263(1)
8.3.3 Human Cytokines
263(1)
8.3.4 Human Plasma Protein Factor
263(1)
8.3.5 Human Bone Formation Protein
264(1)
8.3.6 Enzymes
264(1)
8.4 Antibody Therapeutic Proteins
264(23)
8.4.1 Mode of Action
266(1)
8.4.2 Types of Antibodies
267(8)
8.4.2.1 Recombinant Antibodies
267(1)
8.4.2.2 Synthetic Antibodies
268(1)
8.4.2.3 Affimer Proteins
268(1)
8.4.2.4 Structural Protein Scaffolds
268(1)
8.4.2.5 Bispecific Antibodies (BsAbs)
269(1)
8.4.2.6 Multi-Specific Antibodies (MsAbs)
270(1)
8.4.2.7 Fab Fragments and Single-Chain Antibodies
270(1)
8.4.2.8 Humanized and Chimeric mAbs
270(1)
8.4.2.9 Affinity Maturation
271(1)
8.4.2.10 Antigenized Antibodies
272(1)
8.4.2.11 IgG1 Fusion Proteins
272(1)
8.4.2.12 Drug or Toxin Conjugation
272(1)
8.4.2.13 Future Antibodies
273(2)
8.4.3 Development of Antibodies
275(2)
8.4.4 Exogenous Methods
277(3)
8.4.4.1 Mouse Hybridoma
278(2)
8.4.4.2 Transgenic Mice
280(1)
8.4.5 Surface Display Libraries
280(6)
8.4.5.1 Phage Display
281(2)
8.4.5.2 Yeast Display
283(2)
8.4.5.3 Ribosome Display
285(1)
8.4.5.4 mRNA Display
285(1)
8.4.6 Recombinant Expression
286(1)
8.5 Immunogenicity
287(4)
8.5.1 Protein Immunogenicity
288(1)
8.5.2 Immunogenicity Testing
289(1)
8.5.3 Innate System
290(1)
8.5.4 Adaptive System
290(1)
8.6 Pharmacokinetics of Therapeutic Proteins
291(8)
8.6.1 Absorption
293(2)
8.6.2 Distribution
295(1)
8.6.3 Elimination
295(2)
8.6.4 Pharmacokinetic Manipulations
297(10)
8.6.4.1 Protein Modification to Increase Duration of Action
297(1)
8.6.4.2 Protein Pegylation
298(1)
8.6.4.3 Unnatural Construction
298(1)
8.7 Conclusion
299(2)
Additional Reading
301(6)
9 Manufacturing Trends 307(38)
9.1 Background
307(1)
9.2 Process Optimizations
307(5)
9.2.1 Cell Line Development
307(1)
9.2.2 Media
308(1)
9.2.3 High Cell Density Cryopreservation
309(1)
9.2.4 Cell Culture Operations
309(2)
9.2.5 Bioreactor Cycle
311(1)
9.3 Single-Use Technology (SUT)
312(21)
9.3.1 Containers and Mixing Systems
313(1)
9.3.2 Drums, Containers, and Tank Liners
313(2)
9.3.2.1 2D Bags
314(1)
9.3.2.2 3D Bags
314(1)
9.3.3 Advantages
315(1)
9.3.4 Single-Use Bioreactors (SUBS)
315(3)
9.3.5 Other Components
318(6)
9.3.5.1 Optical Sensors
319(1)
9.3.5.2 Biomass Sensors
320(1)
9.3.5.3 Electrochemical Sensors
320(1)
9.3.5.4 Pressure Sensors
320(1)
9.3.5.5 Sampling Systems
321(1)
9.3.5.6 Connectors
322(1)
9.3.5.7 Tubing
323(1)
9.3.5.8 Pumps
323(1)
9.3.5.9 Tube Welder and Scalers
324(1)
9.3.6 Sampling
324(1)
9.3.7 Downstream Processing
325(4)
9.3.7.1 Cell Harvest
325(1)
9.3.7.2 Purification
326(1)
9.3.7.3 Virus Removal
327(1)
9.3.7.4 Filtration-UF/DF and TFF
328(1)
9.3.7.5 General Filtration Applications
328(1)
9.3.8 Fill Finish Operations
329(1)
9.3.9 Safety
329(4)
9.3.9.1 Polymers and Additives
310(21)
9.3.9.2 Material Selection
331(1)
9.3.9.3 Testing
331(1)
9.3.9.4 Regulatory
332(1)
9.4 Online Monitoring
333(1)
9.5 Continuous Manufacturing
333(4)
9.5.1 Continuous Chromatography Operations
336(10)
9.5.1.1 Straight Through Processing (STP)
336(1)
9.5.1.2 Periodic Countercurrent Chromatography (PCC)
337(1)
9.5.1.3 Simulated Moving Bed (SMB) Chromatography
337(1)
9.6 Conclusion
337(1)
Appendix: Databases Relevant to Antibodies
337(1)
Additional Reading
338(7)
10 Therapeutic Protein Delivery Systems 345(36)
10.1 Background
345(1)
10.2 Route Selection
346(7)
10.2.1 Selection
346(1)
10.2.2 Excipients and Properties
347(4)
10.2.2.1 pH
349(1)
10.2.2.2 Surface Tension
350(1)
10.2.2.3 Tonicity
350(1)
10.2.2.4 Protectants
350(1)
10.2.2.5 Stabilizers
351(1)
10.2.3 Liquid Formulations
351(1)
10.2.4 Lyophilized Formulations
352(1)
10.3 Delivery Routes
353(6)
10.3.1 Intravenous
353(1)
10.3.2 Subcutaneous
353(2)
10.3.3 Oral
355(1)
10.3.4 Nasal
356(1)
10.3.5 Transdermal
356(1)
10.3.6 Pulmonary
357(1)
10.3.7 Ocular
358(1)
10.3.8 Rectal
359(1)
10.4 Formulation Technologies
359(4)
10.4.1 Hydrogels and In Situ Forming Gels
359(1)
10.4.2 Nanoparticles
360(1)
10.4.3 Liposome
360(1)
10.4.4 Higher Concentration Formulations
361(2)
10.5 Examples of Formulation
363(3)
10.5.1 Oprelvekin Injection (Interleukin IL-11)
363(1)
10.5.2 Interleukin Injection (IL-2)
363(1)
10.5.3 Interferon Alfa-2a Injection
363(1)
10.5.4 Interferon Beta-1b
364(1)
10.5.5 Interferon Beta-1a Injection
364(1)
10.5.6 Interferon Alfa-n3 Injection
364(1)
10.5.7 Interferon Alfacon-1 Injection
364(1)
10.5.8 Interferon Gamma-1b Injection
365(1)
10.5.9 Infliximab for Injection
365(1)
10.5.10 Daclizumab for Injection
365(1)
10.5.11 Coagulation Factor VIIa (Recombinant) Injection
365(1)
10.5.12 Reteplase Recombinant for Injection
366(1)
10.5.13 Alteplase Recombinant Injection
366(1)
10.6 Conclusion
366(1)
Appendix 10.1: Physicochemical Properties of Proteins and Peptides Approved by the FDA
367(8)
Additional Reading
375(6)
11 Gene and Cell Therapy 381(40)
11.1 Background
381(4)
11.2 Gene Therapy
385(14)
11.2.1 Viral Vector Manufacturing
386(2)
11.2.2 Downstream Manufacturing
388(3)
11.2.3 Risks of Gene Therapy
391(1)
11.2.4 Gene Editing
392(1)
11.2.5 Techniques
393(2)
11.2.6 Gene Editing Technologies
395(1)
11.2.7 CRISPR
395(3)
11.2.8 DNA-Based Therapeutics
398(1)
11.2.9 Gene Transfer Technologies
398(1)
11.2.9.1 Mechanical and Electrical Techniques
398(1)
11.2.9.2 Vector-Assisted Delivery Systems
398(1)
11.2.10 Approved Products
399(1)
11.3 Cell Therapy
399(5)
11.3.1 Types of Cell Therapies
401(1)
11.3.2 CAR-T Therapy
402(1)
11.3.3 Allogenic Cell Therapy
403(1)
11.4 Regulatory Considerations
404(13)
11.4.1 Development and Characterization of Cell Populations for Administration
405(3)
11.4.1.1 Collection of Cells
405(1)
11.4.1.2 Tissue Typing
406(1)
11.4.1.3 Procedures
406(2)
11.4.2 Characterization and Release Testing of Cellular Gene Therapy Products
408(1)
11.4.2.1 Cell Identity
408(1)
11.4.2.2 Potency
408(1)
11.4.2.3 Viability
408(1)
11.4.2.4 Adventitious Agent Testing
408(1)
11.4.2.5 Purity
408(1)
11.4.2.6 General Safety Test
408(1)
11.4.2.7 Frozen Cell Banks
409(1)
11.4.3 Additional Applications: Addition of Radioisotopes or Toxins to Cell Preparations
409(1)
11.4.4 Production, Characterization, and Release Testing of Vectors for Gene Therapy
409(2)
11.4.4.1 Vector Construction and Characterization
409(1)
11.4.4.2 Vector Production System
409(1)
11.4.4.3 Master Viral Banks
409(1)
11.4.4.4 Lot-to-Lot Release Testing and Specifications for Vectors
410(1)
11.4.4.5 Adventitious Agents
410(1)
11.4.5 Issues Related to Particular Classes of Vectors for Gene Therapy
411(2)
11.4.5.1 Additional Considerations for the Use of Plasmid Vector Products
411(1)
11.4.5.2 Additional Considerations for the Use of Retroviral Vector Products
411(1)
11.4.5.3 Additional Considerations for the Use of Adenoviral Vectors
412(1)
11.4.6 Modifications in Vector Preparations
413(1)
11.4.7 Preclinical Evaluation of Cellular and Gene Therapies
414(7)
11.4.7.1 General Principles
414(1)
11.4.7.2 Animal Species Selection and Use of Alternative Animal Models
415(1)
11.4.7.3 Somatic Cell and Gene-Modified Cellular Therapies
415(1)
11.4.7.4 Direct Administration of Vectors In Vivo
415(1)
11.4.7.5 Expression of Gene Product and Induction of Immune Responses
416(1)
11.4.7.6 Vector Localization to Reproductive Organs
416(1)
11.5 Conclusion
417(1)
Additional Reading
417(4)
12 Nucleic Acid Vaccines 421(18)
12.1 Background
421(1)
12.2 mRNA Vaccine
421(12)
12.2.1 Development Cycle
427(2)
12.2.2 Formulation and Delivery
429(3)
12.2.3 COVID-19 Vaccine
432(1)
12.3 DNA Vaccine
433(4)
12.3.1 Delivery
435(1)
12.3.2 Antibody Response
436(1)
Additional Reading
437(2)
13 Botanical Products 439(30)
13.1 Overview
439(1)
13.2 Complimentary Medicines
439(7)
13.2.1 History
440(1)
13.2.2 Development Innovations
441(1)
13.2.3 Technologies
442(1)
13.2.4 Genomics and Biomarkers
442(2)
13.2.5 Proteomics
444(1)
13.2.6 Target Identification of Label-Free Botanical Products
445(1)
13.2.7 Metabolomics and Metabonomics
445(1)
13.3 Regulatory Plan
446(16)
13.3.1 Background
446(2)
13.3.2 Chemistry
448(4)
13.3.3 Specifications
452(1)
13.3.4 Standardization
453(1)
13.3.5 Efficacy and Safety
454(1)
13.3.6 Prior Human Use
454(1)
13.3.7 CMC
455(15)
13.3.7.1 Starting Material
456(1)
13.3.7.2 Control of Botanical Substances and Preparations
457(1)
13.3.7.3 Control of Vitamins and Minerals (If Applicable)
457(1)
13.3.7.4 Control of Excipients
457(1)
13.3.7.5 Stability Testing
458(1)
13.3.7.6 Testing Criteria
458(1)
13.3.7.7 Botanical Substances
458(3)
13.3.7.8 Botanical Product
461(1)
13.4 Conclusion
462(1)
Additional Reading
462(7)
14 Regulatory Optimization 469(62)
14.1 Background
469(1)
14.2 Scope
470(2)
14.2.1 Assumptions
470(1)
14.2.2 Definitions
471(1)
14.3 New Chemical Entities
472(13)
14.3.1 Decision Stage #1-Target Identification
472(1)
14.3.2 Decision Stage #2-Target Validation
472(2)
14.3.3 Decision Stage #3-Identification of Actives
474(1)
14.3.4 Decision Stage #4-Confirmation of Hits
474(2)
14.3.5 Decision Stage #5-Identification of Chemical Lead
476(3)
14.3.6 Decision Stage #6-Selection of Optimized Chemical Lead
479(1)
14.3.7 Decision Stage #7-Selection of a Development Candidate
479(3)
14.3.8 Decision Stage #8-Pre-IND Meeting with the FDA
482(1)
14.3.9 Decision Stage #9-Preparation and Submission of an IND Application
482(1)
14.3.10 Decision Stage #10-Human Proof of Concept
483(1)
14.3.11 Decision Stage #11-Clinical Proof of Concept
483(2)
14.4 Repurposing of Marketed Drugs
485(10)
14.4.1 Decision Stage #1: Identification of Actives
485(1)
14.4.2 Decision Stage #2: Confirmation of Hits
485(1)
14.4.3 Decision Stage #3: Gap Analysis/Development Plan
485(5)
14.4.4 Decision Stage #4: Clinical Formulation Development
490(1)
14.4.5 Decision Stage #5: Preclinical Safety Data Package
490(1)
14.4.6 Decision Stage #6: Clinical Supplies Manufacture
490(5)
14.4.7 Decision Stage #7: IND Preparation and Submission
495(1)
14.4.8 Decision Stage #8: Human Proof of Concept
495(1)
14.5 Drug Delivery Platform Technology
495(8)
14.5.1 Decision Stage #1: Clinical Formulation Development
495(4)
14.5.2 Decision Stage #2: Development Plan
499(1)
14.5.3 Decision Stage #3: Clinical Supplies Manufacture
499(1)
14.5.4 Decision Stage #4: Preclinical Safety Package
499(1)
14.5.5 Decision Stage #5: IND Preparation and Submission
500(1)
14.5.6 Decision Stage #6: Human Proof of Concept
500(3)
14.5.7 Decision Stage #7: Clinical Proof of Concept
503(1)
14.6 Biological Products
503(14)
14.6.1 Batch
506(1)
14.6.2 Upstream
507(1)
14.6.3 Downstream
508(1)
14.6.4 Facility
509(1)
14.6.5 Equipment
510(1)
14.6.6 Validation
510(1)
14.6.7 Testing
511(1)
14.6.8 Quality
512(1)
14.6.9 Fill
513(1)
14.6.10 Water
513(1)
14.6.11 Facility Design
513(2)
14.6.12 Cleaning
515(1)
14.6.13 Filling and Finishing
516(1)
14.7 Testing
517(5)
14.8 Documentation Process
522(3)
14.8.1 Process Analytical Technology (PAT)
523(1)
14.8.2 Automation
524(1)
14.9 Predictions
525(1)
14.10 Conclusion
526(1)
Additional Reading
526(5)
15 Intellectual Property 531(26)
15.1 Background
531(1)
15.2 About Patents
531(1)
15.3 Patent Landscape
532(1)
15.4 Patent Laws
532(6)
15.4.1 Pharmaceutical Patenting Practices
537(1)
15.5 Types of Patents
538(2)
15.5.1 Utility Model in the EU
538(1)
15.5.2 Provisional Application
539(1)
15.6 Nonobviousness
540(3)
15.7 Patent Management
543(3)
15.7.1 Broad Coverage
543(1)
15.7.2 Submarine Patents
543(1)
15.7.3 System Expression Patents
544(1)
15.7.4 Process Patents of Originator
544(1)
15.7.5 Third-Party Process Patents
544(1)
15.7.6 Formulation Composition
544(1)
15.7.7 Lifecycle Formulation Projections
544(1)
15.7.8 Alternate Offering
544(1)
15.7.9 Delivery Devices
545(1)
15.7.10 Unpatentable Inventions
545(1)
15.7.11 Software Patents
546(1)
15.7.12 Medical Method Patents
546(1)
15.8 Patent Classification
546(4)
15.8.1 Class 435
546(1)
15.8.2 Class 424
547(2)
15.8.3 Class 801
549(1)
15.9 Biological Patents
550(3)
15.9.1 Biological Products
551(1)
15.9.2 Monoclonal Antibody Technology
552(1)
15.9.3 Antisense Technology
552(1)
15.9.4 Transgenic Plants
553(1)
15.10 Freedom to Operate
553(2)
15.11 Conclusion
555(1)
Additional Reading
555(2)
Index 557
Sarfaraz K. Niazi, Ph.D., is an Adjunct Professor at the University of Illinois and University of Houston; he has authored 60+ major books, 100+ research papers, and 100+ patents, mainly in the field of bioprocessing, drug discovery, mRNA vaccines, drug formulations, thermodynamic systems, alcohol aging, nutraceuticals and treatment of autoimmune diseases. He has established multiple biotechnology projects, from concept to market. He also serves as an advisor to major pharmaceutical and biopharmaceutical companies, regulatory agencies, the FDA, the US Congress, and several heads of state. He is also a patent law practitioner.