Atjaunināt sīkdatņu piekrišanu

E-grāmata: Future Spacecraft Propulsion Systems and Integration: Enabling Technologies for Space Exploration

  • Formāts: EPUB+DRM
  • Sērija : Springer Praxis Books
  • Izdošanas datums: 30-Aug-2017
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783662547441
  • Formāts - EPUB+DRM
  • Cena: 189,75 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Sērija : Springer Praxis Books
  • Izdošanas datums: 30-Aug-2017
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783662547441

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The updated and expanded third edition of this book focuses on the multi-disciplinary coupling between flight-vehicle hardware alternatives and enabling propulsion systems. It discusses how to match near-term and far-term aerospace vehicles to missions and provides a comprehensive overview of the subject, directly contributing to the next-generation space infrastructure, from space tourism to space exploration. This holistic treatment defines a mission portfolio addressing near-term to long-term space transportation needs covering sub-orbital, orbital and escape flight profiles. In this context, a vehicle configuration classification is introduced covering alternatives starting from the dawn of space access. A best-practice parametric sizing approach is introduced to correctly design the flight vehicle for the mission. This technique balances required mission with the available vehicle solution space and is an essential capability sought after by technology forecasters and strategic planners alike.

1 Overview
1(18)
1.1 The Challenge
1(1)
1.2 Historical Developments
1(1)
1.3 Challenge of Flying to Space
2(2)
*1.3.1 Vehicle-Integrated Rocket Propulsion
3(1)
*1.3.2 Vehicle-Integrated Airbreathing Propulsion
3(1)
*1.3.3 Choice of Propulsion System: A Multi-disciplinary Challenge
3(1)
1.4 Operational Requirements
4(2)
1.5 Operational Space Distances, Speed, and Times
6(3)
1.6 Implied Propulsion Performance
9(4)
1.7 Propulsion Concepts Available for Solar System Exploration
13(6)
Bibliography
17(2)
2 Our Progress Appears to Be Impeded
19(24)
2.1 Meeting the Challenge
19(1)
2.2 Early Progress in Space
19(3)
2.3 Historical Analog
22(2)
2.4 Evolution of Space Launchers from Ballistic Missiles
24(5)
2.5 Conflicts Between Expendable Rockets and Reusable Airbreathers
29(5)
2.6 Commercialization and Exploration Road Map
34(9)
*2.6.1 Commercial Near-Earth Launchers Enable the First Step
34(4)
*2.6.2 On-Orbit Operations in Near-Earth Orbit Enable the Second Step
38(1)
*2.6.3 Earth-Moon System Enables the Third Step
38(1)
*2.6.4 Nuclear or High-Energy Space Propulsion Enables the Fourth Step
39(1)
*2.6.5 Very High-Energy Space Propulsion Enables the Fifth Step
39(1)
*2.6.6 Light Speed-Plus Propulsion Enables the Sixth Step
39(1)
Bibliography
40(3)
3 Commercial Near-Earth Space Launcher: Understanding System Integration
43(80)
3.1 Missions and Geographical Considerations
45(1)
3.2 Energy, Propellants, and Propulsion Requirements
46(2)
3.3 Energy Requirements to Change Orbital Altitude
48(2)
3.4 Operational Concepts Anticipated for Future Missions
50(1)
3.5 Configuration Concepts
51(9)
3.6 Takeoff and Landing Mode
60(2)
3.7 Transatmospheric Launcher Sizing
62(43)
*3.7.1 Vehicle Design Rationale
62(1)
*3.7.2 Vehicle Sizing Approach
63(9)
*3.7.3 Propulsion Systems
72(9)
*3.7.4 Sizing Methodology and Software Implementation
81(24)
3.8 Available Solution Spaces: Examples
105(5)
*3.8.1 Single-Stage-to-Orbit (SSTO) Solution Space
105(4)
*3.8.2 Transatmospheric Space Launcher: Lessons Learned
109(1)
3.9 Hypersonic Configurations: Geometric Characteristics
110(13)
*3.9.1 Configuration Continuum
110(4)
*3.9.2 Configuration Geometry Properties
114(4)
Bibliography
118(5)
4 Commercial Near-Earth Launcher: Propulsion Choices
123(70)
4.1 Propulsion System Alternatives
124(1)
4.2 Propulsion System Characteristics
125(1)
4.3 Airflow Energy Entering the Engine
125(3)
4.4 Internal Flow Energy Losses
128(4)
4.5 Spectrum of Airbreathing Operation
132(2)
4.6 Design Space Available---Interaction of Propulsion and Materials/Structures
134(3)
4.7 Major Sequence of Propulsion Cycles
137(4)
4.8 Rocket-Derived Propulsion
141(2)
4.9 Airbreathing Rocket Propulsion
143(2)
4.10 Thermally Integrated Combined-Cycle Propulsion
145(2)
4.11 Engine Thermal Integration
147(1)
4.12 Total System Thermal Integration
148(4)
4.13 Thermally Integrated Enriched Air Combined-Cycle Propulsion
152(1)
4.14 Comparison of Continuous Operation Cycles
153(5)
4.15 Conclusions with Respect to Continous Operation Cycles
158(1)
4.16 Pulse Detonation Engines
159(3)
*4.16.1 Engine Description
159(1)
*4.16.2 Engine Performance
160(2)
4.17 Conclusions with Respect to Pulse Detonation Cycles
162(1)
4.18 Comparison of Continuous Operation and Pulsed Cycles
163(3)
4.19 Integrated Launcher Sizing with Different Propulsion Systems
166(2)
4.20 Structural Concept and Structural Index
168(1)
4.21 Sizing Results for Continuous and Pulse Detonation Engines
169(3)
4.22 Operational Configuration Concepts: SSTO and TSTO
172(4)
4.23 Emerging Propulsion System Concepts in Development
176(17)
*4.23.1 MagnetoHydroDynamic (MHD) Energy Bypass System
177(4)
*4.23.2 Electromagnetic Radiation Propulsion
181(1)
*4.23.3 Variable Cycle Turboramjet
182(1)
*4.23.4 Aero-Spike Nozzle
183(1)
*4.23.5 ORBLTEC Vortex Rocket Engine
183(3)
Bibliography
186(7)
5 Earth Orbit on-Orbit Operations in Near-Earth
193(32)
5.1 Energy Requirements
195(2)
*5.1.1 Getting to Low Earth Orbit: Energy and Propellant Requirements
195(2)
5.2 Launcher Propulsion System Characteristics
197(4)
*5.2.1 Propellant Ratio to Deliver Propellant to LEO
198(3)
*5.2.2 Geostationary Orbit Satellite Size and Mass
201(1)
5.3 Maneuver Between LEO and GEO, Change in Altitude at Same Orbital Inclination
201(6)
*5.3.1 Energy Requirements for Altitude Change
203(1)
*5.3.2 Mass Ratio Required for Altitude Change
203(3)
*5.3.3 Propellant Delivery Ratio for Altitude Change
206(1)
5.4 Changes in Orbital Inclination
207(7)
*5.4.1 Energy Requirements for Orbital Inclination Change
208(2)
*5.4.2 Mass Ratio Required for Orbital Inclination Change
210(2)
*5.4.3 Propellant Delivery Ratio for Orbital Inclination Change
212(2)
5.5 Representative Space Transfer Vehicles
214(1)
5.6 Operational Considerations
215(7)
*5.6.1 Missions Per Propellant Delivery
216(1)
*5.6.2 Orbital Structures
216(1)
*5.6.3 Orbital Constellations
217(2)
*5.6.4 Docking with Space Facilities and the ISS
219(2)
*5.6.5 Emergency Rescue Vehicle
221(1)
5.7 Observations and Recommendations
222(3)
Bibliography
222(3)
6 Earth-Moon System: Establishing a Solar System Presence
225(18)
6.1 Earth-Moon Characteristics
225(3)
6.2 Requirements to Travel to the Moon
228(5)
*6.2.1 Sustained Operation Lunar Trajectories
230(1)
*6.2.2 Launching from the Moon Surface
230(3)
6.3 History
233(2)
*6.3.1 USSR Exploration History
234(1)
*6.3.2 USA Exploration History
234(1)
*6.3.3 India Exploration History
234(1)
*6.3.4 Japan Exploration History
234(1)
*6.3.5 China Exploration History
235(1)
6.4 Natural Versus Artificial Orbital Station Environments
235(3)
*6.4.1 Prior Orbital Stations
235(1)
*6.4.2 Artificial Orbital Stations
236(1)
*6.4.3 Natural Orbital Stations
237(1)
6.5 Moon Base Functions
238(5)
*6.5.1 Martian Analog
239(1)
*6.5.2 Lunar Exploration
239(2)
*6.5.3 Manufacturing and Production Site
241(1)
Bibliography
242(1)
7 Exploration of Our Solar System
243(68)
7.1 Review of Our Solar System Distances, Speeds, and Propulsion Requirements
243(3)
7.2 Alternative Energy Sources: Nuclear Energy
246(3)
7.3 Limits of Chemical Propulsion and Alternatives
249(4)
*7.3.1 Energy Sources and Specific Impulse
250(2)
*7.3.2 The Need for Nuclear Space Propulsion
252(1)
7.4 Nuclear Propulsion Strategies
253(3)
7.5 Nuclear Propulsion: A Historical Perspective
256(5)
7.6 Nuclear Propulsion: Current Scenarios
261(7)
7.7 Fundamentals of Nuclear Fission
268(1)
7.8 Solid-Core NTR
269(3)
7.9 Particle Bed Reactor Technology
272(2)
7.10 Cermet Technology
274(1)
7.11 MITEE NTR
274(2)
7.12 Gas-Core NTR
276(1)
7.13 Rubbia's Engine
277(3)
7.14 Considerations About NTR Propulsion
280(1)
7.15 Hybrid Nuclear Rockets
280(2)
7.16 Nuclear-Electric Propulsion (NEP)
282(1)
7.17 Nuclear Arcjet Rockets
283(1)
7.18 Nuclear-Electric Rockets
284(1)
7.19 Electrostatic Ion Thrusters
285(2)
7.20 MPD/MHD Thrusters
287(4)
7.21 Hybrid NTR/NER Engines
291(1)
7.22 Inductively Heated NTR
292(2)
*7.22.1 Nuclear-Thermal-Electric Rocket (NTER)
293(1)
7.23 VASIMR (Variable Specific Impulse Magneto-Plasma-Dynamic Rocket)
294(4)
7.24 Propulsion Strategies Compared
298(1)
7.25 Conclusions
299(12)
Bibliography
302(9)
8 Stellar and Interstellar Precursor Missions
311(52)
8.1 Introduction
311(6)
*8.1.1 Quasi-Interstellar Destinations
313(3)
*8.1.2 Time and Distance
316(1)
8.2 Propulsion for Quasi-Interstellar and Stellar Missions
317(5)
*8.2.1 Fusion Requirements and Impact on Propulsion
320(2)
8.3 Traveling at Relativistic Speeds
322(3)
8.4 Power for Quasi-Interstellar and Stellar Propulsion
325(1)
8.5 Fusion Propulsion
326(2)
*8.5.1 Mission Length Enabled by Fusion and Annihilation Propulsion
327(1)
8.6 Fusion Fuels and Their Kinetics
328(2)
8.7 Fusion Propulsion Strategies
330(2)
*8.7.1 Thermal Versus Electric Fusion Propulsion
331(1)
8.8 Fusion Propulsion Reactor Concepts
332(1)
*8.8.1 Confinement Strategies
332(1)
8.9 Magnetic Confinement Reactors (MCR)
333(2)
8.10 Mirror Magnetic Confinement Rockets (Mirror MCR)
335(5)
*8.10.1 Tokamak MCF Rockets
336(3)
*8.10.2 Comparing Thermal and Electric MCF Rockets
339(1)
8.11 Inertial Confinement Fusion
340(4)
*8.11.1 Fusion Ignition
344(1)
8.12 Inertial Electrostatic Confinement (IEC) Fusion
344(1)
8.13 MCF and ICF Fusion: A Comparison
345(5)
8.14 Magnetic-Inertial Confinement (MIC) Fusion
350(2)
8.15 Fusion Propulsion Summary
352(1)
8.16 Antimatter Propulsion
353(1)
8.17 Impulsive Propulsion
354(1)
8.18 Photonic Propulsion
355(1)
8.19 Conclusions: Can We Reach the Stars?
356(7)
Bibliography
357(6)
9 View to the Future and Exploration of Our Galaxy
363(18)
9.1 Introduction
363(1)
9.2 Issues in Developing Near- and Far-Galactic Space Exploration
364(5)
9.3 Black Holes and Galactic Travel
369(3)
9.4 Breakthrough Physics and Propulsion
372(2)
9.5 Superluminal Speed: Is It Required?
374(3)
9.6 Conclusions
377(4)
Bibliography
377(4)
Appendix A Radiation---Risks, Dose Assessment, and Shielding 381(22)
Appendix B Assessment of Open Magnetic Fusion for Space Propulsion 403(34)
Author Index 437(14)
Subject Index 451