Atjaunināt sīkdatņu piekrišanu

E-grāmata: Fuzzy Data Matching with SQL

  • Formāts: 284 pages
  • Izdošanas datums: 03-Oct-2023
  • Izdevniecība: O'Reilly Media
  • Valoda: eng
  • ISBN-13: 9781098152246
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 46,20 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 284 pages
  • Izdošanas datums: 03-Oct-2023
  • Izdevniecība: O'Reilly Media
  • Valoda: eng
  • ISBN-13: 9781098152246
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

If you were handed two different but related sets of data, what tools would you use to find the matches? What if all you had was SQL SELECT access to a database? In this practical book, author Jim Lehmer provides best practices, techniques, and tricks to help you import, clean, match, score, and think about heterogeneous data using SQL.

DBAs, programmers, business analysts, and data scientists will learn how to identify and remove duplicates, parse strings, extract data from XML and JSON, generate SQL using SQL, regularize data and prepare datasets, and apply data quality and ETL approaches for finding the similarities and differences between various expressions of the same data.

Full of real-world techniques, the examples in the book contain working code. You'll learn how to:

  • Identity and remove duplicates in two different datasets using SQL
  • Regularize data and achieve data quality using SQL
  • Extract data from XML and JSON
  • Generate SQL using SQL to increase your productivity
  • Prepare datasets for import, merging, and better analysis using SQL
  • Report results using SQL
  • Apply data quality and ETL approaches to finding similarities and differences between various expressions of the same data

James Lehmer has been "in computers" for over three decades in various software development roles - programmer, systems programmer, software engineer, team lead, and software architect. He has worked on a variety of operating systems with a number of programming languages. James currently works in a Windows shop coding primarily in C#, but with his background in cross-platform development, he often gets tapped to deal with any *IX boxes that enter his environment.