Atjaunināt sīkdatņu piekrišanu

E-grāmata: Fuzzy Mathematics: An Introduction for Engineers and Scientists

  • Formāts - PDF+DRM
  • Cena: 142,16 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

In the mid-1960"s I had the pleasure of attending a talk by Lotfi Zadeh at which he presented some of his basic (and at the time, recent) work on fuzzy sets. Lotfi"s algebra of fuzzy subsets of a set struck me as very nice; in fact, as a graduate student in the mid-1950"s, I had suggested similar ideas about continuous-truth-valued propositional calculus (inffor "and", sup for "or") to my advisor, but he didn"t go for it (and in fact, confused it with the foundations of probability theory), so I ended up writing a thesis in a more conventional area of mathematics (differential algebra). I especially enjoyed Lotfi"s discussion of fuzzy convexity; I remember talking to him about possible ways of extending this work, but I didn"t pursue this at the time. I have elsewhere told the story of how, when I saw C. L. Chang"s 1968 paper on fuzzy topological spaces, I was impelled to try my hand at fuzzi fying algebra. This led to my 1971 paper "Fuzzy groups", which became the starting point

of an entire literature on fuzzy algebraic structures. In 1974 King-Sun Fu invited me to speak at a U. S. -Japan seminar on Fuzzy Sets and their Applications, which was to be held that summer in Berkeley.

1 Fuzzy Subsets.- 1.1 Fuzzy Relations.- 1.2 Operations on Fuzzy Relations.- 1.3 Reflexivity, Symmetry and Transitivity.- 1.4 Pattern Classification Based on Fuzzy Relations.- 1.5 Advanced Topics on Fuzzy Relations.- 1.6 References.- 2 Fuzzy Graphs.- 2.1 Paths and Connectedness.- 2.2 Clusters.- 2.3 Cluster Analysis and Modeling of Information Networks.- 2.4 Connectivity in Fuzzy Graphs.- 2.5 Application to Cluster Analysis.- 2.6 Operations on Fuzzy Graphs.- 2.7 Fuzzy Intersection Equations.- 2.8 Fuzzy Graphs in Database Theory.- 2.9 References.- 3 Fuzzy Topological Spaces.- 3.1 Topological Spaces.- 3.2 Metric Spaces and Normed Linear Spaces.- 3.3 Fuzzy Topological Spaces.- 3.4 Sequences of Fuzzy Subsets.- 3.5 F-Continuous Functions.- 3.6 Compact Fuzzy Spaces.- 3.7 Iterated Fuzzy Subset Systems.- 3.8 Chaotic Iterations of Fuzzy Subsets.- 3.9 Starshaped Fuzzy Subsets.- 3.10 References.- 4 Fuzzy Digital Topology.- 4.1 Introduction.- 4.2 Crisp Digital Topology.- 4.3 Fuzzy Connectedness

.- 4.4 Fuzzy Components.- 4.5 Fuzzy Surroundedness.- 4.6 Components, Holes, and Surroundedness.- 4.7 Convexity.- 4.8 The Sup Projection.- 4.9 The Integral Projection.- 4.10 Fuzzy Digital Convexity.- 4.11 On Connectivity Properties of Grayscale Pictures.- 4.12 References.- 5 Fuzzy Geometry.- 5.1 Introduction.- 5.2 The Area and Perimeter of a Fuzzy Subset.- 5.3 The Height, Width and Diameter of a Fuzzy Subset.- 5.4 Distances Between Fuzzy Subsets.- 5.5 Fuzzy Rectangles.- 5.6 A Fuzzy Medial Axis Transformation Based on Fuzzy Disks.- 5.7 Fuzzy Triangles.- 5.8 Degree of Adjacency or Surroundedness.- 5.9 Image Enhancement and Thresholding Using Fuzzy Compactness.- 5.10 Fuzzy Plane Geometry: Points and Lines.- 5.11 Fuzzy Plane Geometry: Circles and Polygons.- 5.12 Fuzzy Plane Projective Geometry.- 5.13 A Modified Hausdorff Distance Between Fuzzy Subsets..- 5.14 References.- 6 Fuzzy Abstract Algebra.- 6.1 Crisp Algebraic Structures.- 6.2 Fuzzy Substructures of Algebraic Structures.- 6.3 F

uzzy Submonoids and Automata Theory.- 6.4 Fuzzy Subgroups, Pattern Recognition and Coding Theory.- 6.5 Free Fuzzy Monoids and Coding Theory.- 6.6 Formal Power Series, Regular Fuzzy Languages, and Fuzzy Automata.- 6.7 Nonlinear Systems of Equations of Fuzzy Singletons.- 6.8 Localized Fuzzy Subrings.- 6.9 Local Examination of Fuzzy Intersection Equations.- 6.10 More on Coding Theory.- 6.11 Other Applications.- 6.12 References.- List of Figures.- List of Tables.- List of Symbols.

Papildus informācija

Springer Book Archives
1 Fuzzy Subsets.- 1.1 Fuzzy Relations.- 1.2 Operations on Fuzzy
Relations.- 1.3 Reflexivity, Symmetry and Transitivity.- 1.4 Pattern
Classification Based on Fuzzy Relations.- 1.5 Advanced Topics on Fuzzy
Relations.- 1.6 References.- 2 Fuzzy Graphs.- 2.1 Paths and Connectedness.-
2.2 Clusters.- 2.3 Cluster Analysis and Modeling of Information Networks.-
2.4 Connectivity in Fuzzy Graphs.- 2.5 Application to Cluster Analysis.- 2.6
Operations on Fuzzy Graphs.- 2.7 Fuzzy Intersection Equations.- 2.8 Fuzzy
Graphs in Database Theory.- 2.9 References.- 3 Fuzzy Topological Spaces.- 3.1
Topological Spaces.- 3.2 Metric Spaces and Normed Linear Spaces.- 3.3 Fuzzy
Topological Spaces.- 3.4 Sequences of Fuzzy Subsets.- 3.5 F-Continuous
Functions.- 3.6 Compact Fuzzy Spaces.- 3.7 Iterated Fuzzy Subset Systems.-
3.8 Chaotic Iterations of Fuzzy Subsets.- 3.9 Starshaped Fuzzy Subsets.- 3.10
References.- 4 Fuzzy Digital Topology.- 4.1 Introduction.- 4.2 Crisp Digital
Topology.- 4.3 Fuzzy Connectedness.- 4.4 Fuzzy Components.- 4.5 Fuzzy
Surroundedness.- 4.6 Components, Holes, and Surroundedness.- 4.7 Convexity.-
4.8 The Sup Projection.- 4.9 The Integral Projection.- 4.10 Fuzzy Digital
Convexity.- 4.11 On Connectivity Properties of Grayscale Pictures.- 4.12
References.- 5 Fuzzy Geometry.- 5.1 Introduction.- 5.2 The Area and Perimeter
of a Fuzzy Subset.- 5.3 The Height, Width and Diameter of a Fuzzy Subset.-
5.4 Distances Between Fuzzy Subsets.- 5.5 Fuzzy Rectangles.- 5.6 A Fuzzy
Medial Axis Transformation Based on Fuzzy Disks.- 5.7 Fuzzy Triangles.- 5.8
Degree of Adjacency or Surroundedness.- 5.9 Image Enhancement and
Thresholding Using Fuzzy Compactness.- 5.10 Fuzzy Plane Geometry: Points and
Lines.- 5.11 Fuzzy Plane Geometry: Circles and Polygons.- 5.12 Fuzzy Plane
Projective Geometry.- 5.13 A Modified Hausdorff Distance Between Fuzzy
Subsets..- 5.14 References.- 6 Fuzzy Abstract Algebra.- 6.1 Crisp Algebraic
Structures.- 6.2 Fuzzy Substructures of Algebraic Structures.- 6.3 Fuzzy
Submonoids and Automata Theory.- 6.4 Fuzzy Subgroups, Pattern Recognition and
Coding Theory.- 6.5 Free Fuzzy Monoids and Coding Theory.- 6.6 Formal Power
Series, Regular Fuzzy Languages, and Fuzzy Automata.- 6.7 Nonlinear Systems
of Equations of Fuzzy Singletons.- 6.8 Localized Fuzzy Subrings.- 6.9 Local
Examination of Fuzzy Intersection Equations.- 6.10 More on Coding Theory.-
6.11 Other Applications.- 6.12 References.- List of Figures.- List of
Tables.- List of Symbols.