Atjaunināt sīkdatņu piekrišanu

E-grāmata: Fuzzy Rule-Based Modeling with Applications to Geophysical, Biological, and Engineering Systems

(University of Stuttgart, Stuttgart, Germany),
  • Formāts: 256 pages
  • Sērija : Systems Engineering
  • Izdošanas datums: 07-Oct-2022
  • Izdevniecība: CRC Press Inc
  • Valoda: eng
  • ISBN-13: 9780429610868
  • Formāts - PDF+DRM
  • Cena: 657,45 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: 256 pages
  • Sērija : Systems Engineering
  • Izdošanas datums: 07-Oct-2022
  • Izdevniecība: CRC Press Inc
  • Valoda: eng
  • ISBN-13: 9780429610868

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book presents in a systematic and comprehensive manner the modeling of uncertainty, vagueness, or imprecision, alias "fuzziness," in just about any field of science and engineering. It delivers a usable methodology for modeling in the absence of real-time feedback.
The book includes a short introduction to fuzzy logic containing basic definitions of fuzzy set theory and fuzzy rule systems. It describes methods for the assessment of rule systems, systems with discrete response sets, for modeling time series, for exact physical systems, examines verification and redundancy issues, and investigates rule response functions.
Definitions and propositions, some of which have not been published elsewhere, are provided; numerous examples as well as references to more elaborate case studies are also given. Fuzzy rule-based modeling has the potential to revolutionize fields such as hydrology because it can handle uncertainty in modeling problems too complex to be approached by a stochastic analysis. There is also excellent potential for handling large-scale systems such as regionalization or highly non-linear problems such as unsaturated groundwater pollution.
Introduction
Basic Elements and Definitions
Fuzzy Sets: Definitions and Properties
Fuzzy Numbers
Assessment of the Membership Functions
Fuzzy Sets, Possibilities and Probabilities
Fuzzy Rules
The Structure of a Fuzzy Rule
Combination of Fuzzy Rule Responses
Defuzzification
Case of Fuzzy Premises
Rules with Multiple Responses
Rule Systems
Completeness and Redundancy
Variables to Be Used for Rule Systems
Rules and Continuous Functions
Membership Functions in Rule Systems
Sensitivity of the Response Functions
Rule Construction
Explicit Rule Specification
Deriving Rule Systems from Datasets
Known Rule Structure
Partially Explicit Rule Structures
Unknown Rule Structure
Deriving Rule Systems from Fuzzy Data
Rule Verification
Removing Unnecessary Rules
Fuzzy Rule-Based Modeling versus Fuzzy Control
Principles of Fuzzy Control
Examples of Fuzzy Control
Fuzzy Control and Fuzzy Rule-Based Modeling
Rule Systems with Discrete Responses
Combination of Discrete Consequence Type Rules
Rule Assessment
Application to Weather Classification
Application to Time Series
Rule Assessment
Example: Water Demand Forecasting
Example: Daily Mean Temperature
Application to Dynamical Physical Systems
Application to Soil Water Movement
Other Applications
Application to Medical Diagnosis
Sustainable Reservoir Operation
References
A Proofs of Selected Propositions
Andras Bardossy, Lucien Duckstein