Atjaunināt sīkdatņu piekrišanu

Galois and Cleft Monoidal Cowreaths. Applications [Mīkstie vāki]

  • Formāts: Paperback / softback, 125 pages, height x width: 254x178 mm, weight: 265 g
  • Sērija : Memoirs of the American Mathematical Society
  • Izdošanas datums: 30-Sep-2021
  • Izdevniecība: American Mathematical Society
  • ISBN-10: 1470447525
  • ISBN-13: 9781470447526
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 97,63 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 125 pages, height x width: 254x178 mm, weight: 265 g
  • Sērija : Memoirs of the American Mathematical Society
  • Izdošanas datums: 30-Sep-2021
  • Izdevniecība: American Mathematical Society
  • ISBN-10: 1470447525
  • ISBN-13: 9781470447526
Citas grāmatas par šo tēmu:
"We introduce (pre-)Galois and cleft monoidal cowreaths. Generalizing a result of Schneider, to any pre-Galois cowreath we associate a pair of adjoint functors L R and give necessary and sufficient conditions for the adjunction to be an equivalence of categories. Inspired by the work of Doi we also give sufficient conditions for L R to be an equivalence, and consequently conditions under which a fundamental structure theorem for entwined modules over monoidal cowreaths holds. We show that a cowreath is cleft if and only if it is Galois and has the normal basis property; this generalizes a result concerning Hopf cleft extensions due to Doi and Takeuchi. Furthermore, we show that the cleft cowreaths are in a one to one correspondence with what we call cleft wreaths. The latter are wreaths in the sense of Lack and Street, equipped with two additional morphisms satisfying some compatibility relations. Note that, in general, the algebras defined by cleft wreaths cannot be identified to (generalized) crossed product algebras, as they were defined by Doi and Takeuchi, and Blattner, Cohen and Montgomery. This becomes more transparent when we apply our theory to cowreaths defined by actions and coactions of a quasi-Hopf algebra, monoidal entwining structures and Doi-Hopf structures, respectively. In particular, we obtain that some constructions of Brzezinski and Schauenburg produce examples of cleft wreaths, and therefore of cleft cowreaths, too"--

Bulacu and Torrecillas introduce (pre-)Galois and cleft monoidal cowreaths. Generalizing a result of Schneider, they associate to any pre-Galois cowreath, a pair of adjoint functors, and give necessary and sufficient conditions for the adjunction to be an equivalent of categories. In sections of a Schneider type theory for monoidal cowreaths, cleft cowreaths and wreath algebras, and applications, they consider such topics as the fundamental theorem for entwined modules over monoidal cowreaths, cleft cowreaths versus wreath algebras, cleft (co)wreaths arising from generalized crossed products. Annotation ©2021 Ringgold, Inc., Portland, OR (protoview.com)
D. Bulacu, University of Bucharest, Romania

B. Torrecillas, Universidad de Almeria, Spain