Atjaunināt sīkdatņu piekrišanu

E-grāmata: Gas Separation Membranes: Polymeric and Inorganic

  • Formāts: PDF+DRM
  • Izdošanas datums: 28-Apr-2015
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319010953
  • Formāts - PDF+DRM
  • Cena: 165,96 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 28-Apr-2015
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319010953

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book describes the tremendous progress that has been made in the development of gas separation membranes based both on inorganic and polymeric materials. Materials discussed include polymer inclusion membranes (PIMs), metal organic frameworks (MOFs), carbon based materials, zeolites, as well as other materials, and mixed matrix membranes (MMMs) in which the above novel materials are incorporated. This broad survey of gas membranes covers material, theory, modeling, preparation, characterization (for example, by AFM, IR, XRD, ESR, Positron annihilation spectroscopy), tailoring of membranes, membrane module and system design, and applications. The book is concluded with some perspectives about the future direction of the field.

Recenzijas

This book is one that addresses gas separation membranes as a separate entity from other membranes in application, while including information still pertinent to general membrane separation studies. Chemists, material scientists, chemical engineers, mechanical engineers, energy engineers, and process designers engaged in gas separations will all find value in this book. this book is a valuable resource for new researchers, and a decent reference for mature researchers in the field of gas phase membrane separations. (Jeremy Lewis, Chemical Engineering Education, Vol. 52 (3), 2018)

1 Introduction 1(10)
1.1 Membrane Separation Processes
1(1)
1.2 Membrane-Based Gas Separation
2(5)
1.2.1 Historical Background
3(1)
1.2.2 Scientific and Commercial Development of Membrane Processes
3(4)
1.3 Advantages of Membrane Processes
7(1)
References
8(3)
2 Fundamentals of Gas Permeation Through Membranes 11(26)
2.1 Gas Permeation Through Membranes
11(10)
2.1.1 Technical Terms Used in Gas Permeation Membrane Science
11(4)
2.1.2 Membrane Separation Principles
15(1)
2.1.3 Gas Permeation Through Porous Membranes
16(3)
2.1.4 Gas Permeation Through Nonporous Membranes
19(1)
2.1.5 Gas Permeation Through Asymmetric Membranes
20(1)
2.2 Diffusion Theory of Small Molecules in Nonporous Polymer Membranes
21(2)
2.3 Diffusion Models for Rubbery Polymers
23(3)
2.4 Diffusion Models for Glassy Polymers
26(1)
2.5 General Membrane Transport Equations
27(3)
2.6 Models for Gas Transport in Nanocomposite Membranes
30(2)
2.6.1 Maxwell's Model
30(1)
2.6.2 Free-Volume Increase Mechanism
30(1)
2.6.3 Solubility Increase Mechanism
31(1)
2.6.4 Nanogap Hypothesis
31(1)
2.7 Facilitated Transport Membranes
32(2)
References
34(3)
3 Gas Separation Membrane Materials and Structures 37(156)
3.1 Membrane Materials for Gas Separation
38(51)
3.1.1 Polymeric Membranes
39(40)
3.1.2 Copolymers and Polymer Blends
79(6)
3.1.3 Other Polymers
85(4)
3.2 Inorganic Membranes
89(34)
3.2.1 Ceramic Membranes
90(1)
3.2.2 Silica Glass Membranes
91(4)
3.2.3 Zeolites
95(28)
3.3 Metal-Organic Framework Membranes for Gas Separations
123(6)
3.4 Mixed Matrix Membranes (MMMs)
129(7)
3.4.1 Preparation of MMMs
135(1)
3.5 Other Materials
136(18)
3.5.1 Metallic Membranes
136(1)
3.5.2 Carbon-Based Membranes
137(17)
3.6 Gas Separation Membrane Structures
154(8)
3.6.1 Homogeneous Dense Membranes or Symmetric Membranes
155(1)
3.6.2 Asymmetric Membranes
156(6)
3.7 Liquid Membranes for Gas Separation
162(11)
3.7.1 Supported Liquid Membranes (SLM) or Immobilized Liquid Membranes (ILM)
163(10)
References
173(20)
4 Membrane Fabrication/Manufacturing Techniques 193(28)
4.1 Polymeric Membranes
193(14)
4.1.1 Phase Inversion Membranes
193(2)
4.1.2 Precipitation by Solvent Evaporation
195(1)
4.1.3 Preparation of Hollow Fiber Membranes
196(6)
4.1.4 Other Techniques
202(4)
4.1.5 Polyelectrolyte Multilayer Membranes
206(1)
4.2 Inorganic Membranes
207(4)
4.2.1 Preparation of Inorganic Membranes
207(3)
4.2.2 Silica Membranes
210(1)
4.3 Composite Membrane Preparation/Mixed Matrix Membranes
211(1)
4.4 Preparation of Metal-Organic Framework Membranes (MOFs)
212(4)
4.4.1 Growth/Deposition from Solvothermal Mother Solutions
213(1)
4.4.2 Microwave-Induced Thermal Deposition (MITD)
214(1)
4.4.3 Stepwise Layer-by-Layer Growth onto the Substrate
215(1)
4.4.4 Electrochemical Deposition of Thin MOF-Films on Metal Substrates
215(1)
4.4.5 Deposition of MOF Thin Films Using a Gel-Layer Approach
215(1)
4.5 Ultrathin Membranes
216(1)
References
217(4)
5 Membrane Modules and Process Design 221(20)
5.1 Membrane Modules
222(10)
5.1.1 Plate and Frame
222(1)
5.1.2 Spiral Wound
223(1)
5.1.3 Tubular
224(1)
5.1.4 Capillary
225(1)
5.1.5 Hollow Fiber
226(3)
5.1.6 Membrane Contactors
229(3)
5.2 Comparison of the Module Configuration
232(1)
5.3 System Design
233(2)
5.4 Process Parameter
235(2)
5.5 Energy Requirements
237(1)
References
238(3)
6 Application of Gas Separation Membranes 241(48)
6.1 Large-Scale Applications
242(18)
6.1.1 Air Separation (Nitrogen and Oxygen Production)
242(4)
6.1.2 Hydrogen Recovery
246(5)
6.1.3 Acid Gas Removal from Natural Gas and Syn Gas
251(6)
6.1.4 Hydrocarbon/Carbon Dioxide Separation
257(2)
6.1.5 Vapor Permeation/Pervaporation Gas Separation
259(1)
6.2 Present and Emerging Large-Scale Applications of Membrane Technology
260(2)
6.3 Dew Pointing of Natural Gas
262(1)
6.4 Olefin-Paraffin Separations
262(6)
6.4.1 Polymeric Membranes
263(1)
6.4.2 Inorganic Membranes
264(1)
6.4.3 Facilitated Transport Membranes
265(3)
6.5 Membrane/Pressure Swing Adsorption Process
268(4)
6.6 Membrane/Distillation Process
272(1)
6.7 Membrane Contactor
272(10)
References
282(7)
7 Characterization of Membranes 289(40)
7.1 Introduction
289(1)
7.2 Mass Transport
290(4)
7.3 Membrane Morphology
294(25)
7.3.1 Microscopic Method
294(3)
7.3.2 Observation of Nodules
297(9)
7.3.3 Spectroscopic Method
306(13)
7.4 Other Techniques
319(1)
7.4.1 Optical Technique
319(1)
7.5 Thermal Properties
320(1)
7.5.1 Differential Scanning Calorimeter (DSC) and Differential Thermal Analysis (DTA)
320(1)
7.6 Mechanical Properties
321(3)
7.6.1 Tensile Strength
321(1)
7.6.2 Young's Modulus or Tensile Modulus of Elasticity
322(2)
References
324(5)
Index 329
Professor Ahmad Fauzi Ismail is the Founding Director of Advanced Membrane Technology Research Center (AMTEC) and also the Dean of Research for Materials and Manufacturing Research Alliance of Universiti Teknologi Malaysia (UTM). Professor Fauzi obtained a PhD. in Chemical Engineering in 1997 from University of Strathclyde and MSc. and BSc. from Universiti Teknologi Malaysia in 1992 and 1989 respectively. He is the author and co-author of over 350 refereed journals. He has authored 3 books, 25 book chapters and 3 edited books, 3 Patents granted 17 Patents pending. He has won more than 120 awards. Professor Fauzis research focuses on development of polymeric, inorganic and novel mixed matrix membranes for water desalination, waste water treatment, gas separation processes, membrane for palm oil refining, photocatalytic membrane for removal of emerging contaminants and polymer electrolyte membrane for fuel cell applications. Professor Fauzi has involved extensively in R&D&C for multinational companies related to membrane-based processes for industrial application. 

Professor Takeshi Matsuura studied at the University of Tokyo and the Institute of Chemical Technology of the Technical University of Berlin. He was appointed to Professor Emeritus of the University of Ottawa upon his retirement in 2002 after serving as professor of the Department of Chemical Engineering (currently Department of Chemical and Biological Engineering) and the director of the Industrial Membrane Research Institute (IMRI). He also served at University Technology Malaysia (UTM), Skudai, Malaysia (currently at the Advanced Membrane Technology Research Centre (AMTEC) of UTM), as a distinguished visiting professor, in years 2007, 2009-2014. He delivered many lectures at overseas research institutions and international conferences. He has published about 450 papers in refereed journals, authored and co-authored 6 books and edited 8 books.

KailashC. Khulbe is a graduate of Agra University, India where he obtained the BSc, MSc and PhD. Degree.  His doctoral thesis was on the kinetics of the oxidation of aldehydes, ketones and other related compounds by persulphate catalyzed by Ag+ ion.  He joined Ottawa University (Chemical Engineering Department) in late 1960s and worked on different projects related with catalysts, bitumen, Oil, ESR, IR, X-ray analysis, Chromatography etc.  He joined the Dr. T. Matsuura group (Industrial Membrane Research Institute (IMRI)) in the middle of   1990s and started work on synthetic membranes. His main interests are AFM, Synthetic Membranes (Polymeric/Inorganic), Water treatment etc. He published more than 350 articles, one book (AFM for synthetic membranes) and many chapters for different books.