1 Introduction |
|
1 | (10) |
|
1.1 Membrane Separation Processes |
|
|
1 | (1) |
|
1.2 Membrane-Based Gas Separation |
|
|
2 | (5) |
|
1.2.1 Historical Background |
|
|
3 | (1) |
|
1.2.2 Scientific and Commercial Development of Membrane Processes |
|
|
3 | (4) |
|
1.3 Advantages of Membrane Processes |
|
|
7 | (1) |
|
|
8 | (3) |
2 Fundamentals of Gas Permeation Through Membranes |
|
11 | (26) |
|
2.1 Gas Permeation Through Membranes |
|
|
11 | (10) |
|
2.1.1 Technical Terms Used in Gas Permeation Membrane Science |
|
|
11 | (4) |
|
2.1.2 Membrane Separation Principles |
|
|
15 | (1) |
|
2.1.3 Gas Permeation Through Porous Membranes |
|
|
16 | (3) |
|
2.1.4 Gas Permeation Through Nonporous Membranes |
|
|
19 | (1) |
|
2.1.5 Gas Permeation Through Asymmetric Membranes |
|
|
20 | (1) |
|
2.2 Diffusion Theory of Small Molecules in Nonporous Polymer Membranes |
|
|
21 | (2) |
|
2.3 Diffusion Models for Rubbery Polymers |
|
|
23 | (3) |
|
2.4 Diffusion Models for Glassy Polymers |
|
|
26 | (1) |
|
2.5 General Membrane Transport Equations |
|
|
27 | (3) |
|
2.6 Models for Gas Transport in Nanocomposite Membranes |
|
|
30 | (2) |
|
|
30 | (1) |
|
2.6.2 Free-Volume Increase Mechanism |
|
|
30 | (1) |
|
2.6.3 Solubility Increase Mechanism |
|
|
31 | (1) |
|
|
31 | (1) |
|
2.7 Facilitated Transport Membranes |
|
|
32 | (2) |
|
|
34 | (3) |
3 Gas Separation Membrane Materials and Structures |
|
37 | (156) |
|
3.1 Membrane Materials for Gas Separation |
|
|
38 | (51) |
|
3.1.1 Polymeric Membranes |
|
|
39 | (40) |
|
3.1.2 Copolymers and Polymer Blends |
|
|
79 | (6) |
|
|
85 | (4) |
|
|
89 | (34) |
|
|
90 | (1) |
|
3.2.2 Silica Glass Membranes |
|
|
91 | (4) |
|
|
95 | (28) |
|
3.3 Metal-Organic Framework Membranes for Gas Separations |
|
|
123 | (6) |
|
3.4 Mixed Matrix Membranes (MMMs) |
|
|
129 | (7) |
|
3.4.1 Preparation of MMMs |
|
|
135 | (1) |
|
|
136 | (18) |
|
|
136 | (1) |
|
3.5.2 Carbon-Based Membranes |
|
|
137 | (17) |
|
3.6 Gas Separation Membrane Structures |
|
|
154 | (8) |
|
3.6.1 Homogeneous Dense Membranes or Symmetric Membranes |
|
|
155 | (1) |
|
3.6.2 Asymmetric Membranes |
|
|
156 | (6) |
|
3.7 Liquid Membranes for Gas Separation |
|
|
162 | (11) |
|
3.7.1 Supported Liquid Membranes (SLM) or Immobilized Liquid Membranes (ILM) |
|
|
163 | (10) |
|
|
173 | (20) |
4 Membrane Fabrication/Manufacturing Techniques |
|
193 | (28) |
|
|
193 | (14) |
|
4.1.1 Phase Inversion Membranes |
|
|
193 | (2) |
|
4.1.2 Precipitation by Solvent Evaporation |
|
|
195 | (1) |
|
4.1.3 Preparation of Hollow Fiber Membranes |
|
|
196 | (6) |
|
|
202 | (4) |
|
4.1.5 Polyelectrolyte Multilayer Membranes |
|
|
206 | (1) |
|
|
207 | (4) |
|
4.2.1 Preparation of Inorganic Membranes |
|
|
207 | (3) |
|
|
210 | (1) |
|
4.3 Composite Membrane Preparation/Mixed Matrix Membranes |
|
|
211 | (1) |
|
4.4 Preparation of Metal-Organic Framework Membranes (MOFs) |
|
|
212 | (4) |
|
4.4.1 Growth/Deposition from Solvothermal Mother Solutions |
|
|
213 | (1) |
|
4.4.2 Microwave-Induced Thermal Deposition (MITD) |
|
|
214 | (1) |
|
4.4.3 Stepwise Layer-by-Layer Growth onto the Substrate |
|
|
215 | (1) |
|
4.4.4 Electrochemical Deposition of Thin MOF-Films on Metal Substrates |
|
|
215 | (1) |
|
4.4.5 Deposition of MOF Thin Films Using a Gel-Layer Approach |
|
|
215 | (1) |
|
|
216 | (1) |
|
|
217 | (4) |
5 Membrane Modules and Process Design |
|
221 | (20) |
|
|
222 | (10) |
|
|
222 | (1) |
|
|
223 | (1) |
|
|
224 | (1) |
|
|
225 | (1) |
|
|
226 | (3) |
|
5.1.6 Membrane Contactors |
|
|
229 | (3) |
|
5.2 Comparison of the Module Configuration |
|
|
232 | (1) |
|
|
233 | (2) |
|
|
235 | (2) |
|
|
237 | (1) |
|
|
238 | (3) |
6 Application of Gas Separation Membranes |
|
241 | (48) |
|
6.1 Large-Scale Applications |
|
|
242 | (18) |
|
6.1.1 Air Separation (Nitrogen and Oxygen Production) |
|
|
242 | (4) |
|
|
246 | (5) |
|
6.1.3 Acid Gas Removal from Natural Gas and Syn Gas |
|
|
251 | (6) |
|
6.1.4 Hydrocarbon/Carbon Dioxide Separation |
|
|
257 | (2) |
|
6.1.5 Vapor Permeation/Pervaporation Gas Separation |
|
|
259 | (1) |
|
6.2 Present and Emerging Large-Scale Applications of Membrane Technology |
|
|
260 | (2) |
|
6.3 Dew Pointing of Natural Gas |
|
|
262 | (1) |
|
6.4 Olefin-Paraffin Separations |
|
|
262 | (6) |
|
6.4.1 Polymeric Membranes |
|
|
263 | (1) |
|
6.4.2 Inorganic Membranes |
|
|
264 | (1) |
|
6.4.3 Facilitated Transport Membranes |
|
|
265 | (3) |
|
6.5 Membrane/Pressure Swing Adsorption Process |
|
|
268 | (4) |
|
6.6 Membrane/Distillation Process |
|
|
272 | (1) |
|
|
272 | (10) |
|
|
282 | (7) |
7 Characterization of Membranes |
|
289 | (40) |
|
|
289 | (1) |
|
|
290 | (4) |
|
|
294 | (25) |
|
|
294 | (3) |
|
7.3.2 Observation of Nodules |
|
|
297 | (9) |
|
7.3.3 Spectroscopic Method |
|
|
306 | (13) |
|
|
319 | (1) |
|
|
319 | (1) |
|
|
320 | (1) |
|
7.5.1 Differential Scanning Calorimeter (DSC) and Differential Thermal Analysis (DTA) |
|
|
320 | (1) |
|
7.6 Mechanical Properties |
|
|
321 | (3) |
|
|
321 | (1) |
|
7.6.2 Young's Modulus or Tensile Modulus of Elasticity |
|
|
322 | (2) |
|
|
324 | (5) |
Index |
|
329 | |