Atjaunināt sīkdatņu piekrišanu

E-grāmata: Gaseous Carbon Waste Streams Utilization: Status and Research Needs

  • Formāts: 256 pages
  • Izdošanas datums: 22-Jan-2019
  • Izdevniecība: National Academies Press
  • Valoda: eng
  • ISBN-13: 9780309483391
  • Formāts - EPUB+DRM
  • Cena: 93,91 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 256 pages
  • Izdošanas datums: 22-Jan-2019
  • Izdevniecība: National Academies Press
  • Valoda: eng
  • ISBN-13: 9780309483391

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

In the quest to mitigate the buildup of greenhouse gases in Earth's atmosphere, researchers and policymakers have increasingly turned their attention to techniques for capturing greenhouse gases such as carbon dioxide and methane, either from the locations where they are emitted or directly from the atmosphere. Once captured, these gases can be stored or put to use. While both carbon storage and carbon utilization have costs, utilization offers the opportunity to recover some of the cost and even generate economic value. While current carbon utilization projects operate at a relatively small scale, some estimates suggest the market for waste carbon-derived products could grow to hundreds of billions of dollars within a few decades, utilizing several thousand teragrams of waste carbon gases per year.





Gaseous Carbon Waste Streams Utilization: Status and Research Needs assesses research and development needs relevant to understanding and improving the commercial viability of waste carbon utilization technologies and defines a research agenda to address key challenges. The report is intended to help inform decision making surrounding the development and deployment of waste carbon utilization technologies under a variety of circumstances, whether motivated by a goal to improve processes for making carbon-based products, to generate revenue, or to achieve environmental goals.

Table of Contents



Front Matter Summary 1 Introduction 2 Gaseous Carbon Waste Resources 3 Mineral Carbonation to Produce Construction Materials 4 Chemical Utilization of CO2 into Chemicals and Fuels 5 Biological Utilization of CO2 into Chemicals and Fuels 6 Methane and Biogas Waste Utilization 7 Enabling Technologies and Resources 8 Life-Cycle Assessment of Carbon Utilization 9 Assessing Commercial Viability of Carbon Utilization Technologies 10 Criteria for Evaluating Carbon Utilization Technologies 11 Research Agenda Appendix A: Glossary Appendix B: Committee and Staff Biosketches
Summary 1(14)
1 Introduction
15(12)
Study Charge
17(1)
Study Approach
17(4)
Carbon Dioxide Utilization
21(2)
Methane Utilization
23(2)
Enabling Resources, Technologies, and Analyses
25(1)
References
26(1)
2 Gaseous Carbon Waste Resources
27(12)
Characterization of Carbon Waste Streams
27(9)
Matching Carbon Waste Streams with Utilization Processes: Research Needs
36(1)
References
37(2)
3 Mineral Carbonation To Produce Construction Materials
39(24)
Emerging Technologies for Mineral Carbonation
41(10)
A Research Agenda for Mineral Carbonation
51(6)
Findings and Recommendations
57(2)
References
59(4)
4 Chemical Utilization Of CO2 Into Chemicals And Fuels
63(34)
Introduction
63(3)
Emerging Technologies for CO2 Conversion into Commodity Chemicals and Fuels Based on Product
66(17)
Intersecting Research Challenges for CO2 Conversion
83(4)
A Research Agenda for Chemical Utilization of Carbon Dioxide
87(1)
Findings, Conclusion, and Recommendations
88(2)
References
90(7)
5 Biological Utilization Of Co2 Into Chemicals And Fuels
97(40)
Photosynthetic Approaches to Carbon Dioxide Utilization
97(19)
Nonphotosynthetic Approaches to Carbon Dioxide Utilization
116(7)
A Research Agenda for Biological Utilization of Carbon Dioxide
123(4)
Findings and Recommendations
127(2)
References
129(8)
6 Methane And Biogas Waste Utilization
137(16)
Commercial Technologies for the Chemical Utilization of Methane
137(2)
Direct Chemical Utilization of Methane Waste Gas Streams
139(4)
Biological Approaches for Utilization of Methane Waste Gas Streams
143(2)
A Research Agenda for Chemical and Biological Utilization of Methane and Biogas
145(5)
References
150(3)
7 Enabling Technologies And Resources
153(12)
Enabling Technologies
153(6)
Enabling Resources
159(4)
Findings
163(1)
References
164(1)
8 Life-Cycle Assessment Of Carbon Utilization
165(18)
Factors to Consider in LCA of Carbon Utilization Systems
168(9)
Research Agenda Items
177(4)
References
181(2)
9 Assessing Commercial Viability Of Carbon Utilization Technologies
183(18)
Introduction
183(2)
Assessment of the Technology Area
185(5)
Assessment of the Market Area
190(4)
Assessment of the Legal Area
194(1)
Overall Commercialization Conclusions
195(2)
Research Agenda Items
197(1)
References
198(3)
10 Criteria For Evaluating Carbon Utilization Technologies
201(14)
Factors for Evaluation of Emerging Technologies Including Carbon Utilization
203(5)
Criteria Specific to Carbon Waste Utilization
208(3)
Conclusions
211(2)
Reference
213(2)
11 Research Agenda
215(14)
Introduction
215(2)
Research Agenda
217(8)
Integration with Current Research Activities
225(2)
Potential for Disruptive Change
227(1)
Reference
228(1)
Appendix A Glossary 229(4)
Appendix B Committee And Staff Biosketches 233