Atjaunināt sīkdatņu piekrišanu

Gauge Theory of Weak Decays: The Standard Model and the Expedition to New Physics Summits [Hardback]

(Technische Universität München)
  • Formāts: Hardback, 650 pages, height x width x depth: 251x194x33 mm, weight: 1720 g, 41 Tables, black and white; 13 Halftones, black and white; 56 Line drawings, black and white
  • Izdošanas datums: 02-Jul-2020
  • Izdevniecība: Cambridge University Press
  • ISBN-10: 1107034035
  • ISBN-13: 9781107034037
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 108,03 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 650 pages, height x width x depth: 251x194x33 mm, weight: 1720 g, 41 Tables, black and white; 13 Halftones, black and white; 56 Line drawings, black and white
  • Izdošanas datums: 02-Jul-2020
  • Izdevniecība: Cambridge University Press
  • ISBN-10: 1107034035
  • ISBN-13: 9781107034037
Citas grāmatas par šo tēmu:
This is the first advanced, systematic and comprehensive look at weak decays in the framework of gauge theories. Included is a large spectrum of topics, both theoretical and experimental. In addition to explicit advanced calculations of Feynman diagrams and the study of renormalization group strong interaction effects in weak decays, the book is devoted to the Standard Model Effective Theory, dominating present phenomenology in this field, and to new physics models with the goal of searching for new particles and interactions through quantum fluctuations. This book will benefit theorists, experimental researchers, and Ph.D. students working on flavour physics and weak decays as well as physicists interested in physics beyond the Standard Model. In its concern for the search for new phenomena at short distance scales through the interplay between theory and experiment, this book constitutes a travel guide to physics far beyond the scales explored by the Large Hadron Collider at CERN.

Recenzijas

'The uniqueness of this book lies in its precious details on a wide variety of interesting rare processes. It is a key reference promises to be extremely useful in the coming decades.' Gino Isidori, Opinion Reviews

Papildus informācija

This is the first systematic and comprehensive look at the subject of weak decays in the framework of gauge theories.
Preface xiii
Acknowledgments xvi
List of Abbreviations
xviii
Introduction 1(22)
Grand View of the Standard Model
1(2)
Grand View of New Physics
3(5)
The Grand View of the Expedition and the Strategy
8(9)
Introducing Main Players
17(3)
How to Use This Book Optimally
20(3)
Part I Basics of Gauge Theories
23(34)
1 Fundamentals
25(32)
1.1 Preliminaries
25(1)
1.2 Lagrangians for Scalar Fields
26(1)
1.3 First Encounter with Symmetries
27(1)
1.4 Checking the Symmetries of Scalar Lagrangians
28(1)
1.5 Promotion of a Global U(1) Symmetry to a Local U(1) Symmetry
29(1)
1.6 A Closer Look at the U(1) Gauge Theory
30(2)
1.7 Nonabelian Global Symmetries
32(5)
1.8 Promotion of a Global Nonabelian Symmetry to a Local One
37(3)
1.9 Lagrangians for Fermions
40(5)
1.10 Spontaneous Symmetry Breakdown (SSB)
45(8)
1.11 Higgs Mechanism
53(4)
Part II The Standard Model
57(28)
2 The Standard Model Of Electroweak And Strong Interactions
59(26)
2.1 Particle Content and Gauge Group of the SM
59(1)
2.2 Short Overview: Lagrangian of the SM
60(2)
2.3 Spontaneous Symmetry Breakdown in the SM
62(3)
2.4 Gauge Boson Self-Interactions
65(1)
2.5 Flavor Structure of the SM
66(13)
2.6 Lepton Flavor Violation
79(1)
2.7 Quantumchromodynamics (QCD)
80(4)
2.8 Final Remarks
84(1)
Part III Weak Decays in the Standard Model
85(330)
3 Weak Decays At Tree Level
87(16)
3.1 Muon Decay
87(3)
3.2 Leptonic Decays of Charged Mesons
90(4)
3.3 Scmileptonic Decays of Charged Mesons
94(2)
3.4 The Determination of |Vcb| and |Vub|
96(2)
3.5 Leptonic and Semileptonic Decays of Neutral Mesons
98(1)
3.6 Nonleptonic Decays of Mesons
98(3)
3.7 Summary and Motivation
101(2)
4 Technology Beyond Trees
103(27)
4.1 Loop Calculations
103(13)
4.2 Renormalization
116(7)
4.3 Renormalization Group Equations
123(7)
5 Short-Distance Structure Of Weak Decays
130(49)
5.1 Operator Product Expansion in Weak Decays
130(19)
5.2 Current-Current Operators beyond Leading Order
149(30)
6 Effective Hamiltonians For Fcnc Processes
179(74)
6.1 Overture: General View of FCNC Processes
179(10)
6.2 Calculations of Basic One-Loop Functions
189(17)
6.3 ΔF = 2 Transitions
206(6)
6.4 The World of Penguins
212(17)
6.5 B → Xsγ Decay
229(15)
6.6 B → s+ and d s+- Transitions
244(5)
6.7 D → sνν and b → sνν Transitions
249(4)
7 Nonperturbative Methods In Weak Decays
253(30)
7.1 General View
253(1)
7.2 Dual QCD Approach
254(20)
7.3 Lattice QCD Results
274(3)
7.4 QCD Factorization for Exclusive B Decays
277(4)
7.5 Heavy Quark Effective Theory (HQET) and Heavy Quark Expansions (HQE)
281(1)
7.6 Other Nonperturbative Methods
282(1)
8 Particle-Antiparticle Mixing And Cp Violation In The Standard Model
283(46)
8.1 Particle-Antiparticle Mixing
283(16)
8.2 Bq Decays into CP Eigenstates
299(5)
8.3 Classification of CP Violation
304(5)
8.4 Standard Analysis of the Unitarity Triangle (UT)
309(8)
8.5 The Angles α, β, and γ from Bd,s Decays
317(8)
8.6 B → πK Decays
325(4)
9 Rare B And K Decays In The Standard Model
329(59)
9.1 B → Ke+e- and B → KPT
329(18)
9.2 Bs,d → μ+μ- and Bs,d → τ+τ-, e+e-
347(8)
9.3 B+ → τ+ντ
355(2)
9.4 B → Dνl, B → D+νl, Bc → J/Ψνl, and Λb → Λcνl
357(10)
9.5 K+ → π+νν and KL → π0νν
367(8)
9.6 B → Kνν, B → Kνν, and B → Xsνν
375(9)
9.7 KL,s → μ+μ- and KL → π0+-
384(4)
10 Ε'/Ε In The Standard Model
388(14)
10.1 Preliminaries
388(2)
10.2 Basic Formulas
390(2)
10.3 Hadronic Matrix Elements
392(3)
10.4 A Convenient Formula for ε'/ε in the SM
395(4)
10.5 Numerical Analysis of ε'/ε
399(3)
11 Charm Flavor Physics
402(8)
11.1 Preliminaries
402(1)
11.2 D0 -- D0 Mixing
402(2)
11.3 CP Asymmetries in D Decays
404(4)
11.4 Connection between D and K Physics
408(2)
12 Status Of Flavor Physics Within The Standard Model
410(5)
12.1 Successes
410(1)
12.2 Summary of the Anomalies
410(2)
12.3 Implications for the Wilson Coefficients
412(3)
Part IV Weak Decays beyond the Standard Model
415(251)
13 First Steps Beyond The Standard Model
417(16)
13.1 Preliminaries
417(1)
13.2 ΔF = 2 Transitions
418(9)
13.3 ΔF = 1 Nonleptonic Operators
427(6)
14 Standard Model Effective Field Theory
433(33)
14.1 Basic Framework
433(4)
14.2 Full Set of Dimension-6 Operators
437(2)
14.3 Rotations in the Flavor Space
439(4)
14.4 Renormalization Group Equations
443(7)
14.5 SU(2)L Correlations between b → sνν and b → s+-
450(3)
14.6 General Procedure and Useful Results
453(6)
14.7 ε'/ε beyond the SM
459(7)
15 Simplest Extensions Of The Sm
466(67)
15.1 Minimal Flavor Violation
466(12)
15.2 2HDMMFV
478(2)
15.3 Beyond MFV: Models with U(2)3 Symmetry
480(3)
15.4 Beyond MFV: Z'Boson
483(22)
15.5 Beyond MFV: Z Boson with FCNC
505(8)
15.6 Beyond MFV: Right-Handed W'
513(2)
15.7 Beyond MFV: Neutral Scalars and Pseudoscalars
515(13)
15.8 Beyond MFV: Charged Scalar Exchanges
528(1)
15.9 Beyond MFV: Colored Gauge Bosons and Scalars
529(4)
16 Specific Models
533(47)
16.1 Preliminaries
533(1)
16.2 331 Models
534(9)
16.3 Vector-Like Quarks and Leptons
543(13)
16.4 Leptoquark Models
556(24)
17 Beyond Quark Flavor Physics
580(42)
17.1 General View
580(3)
17.2 Lepton Flavor Violation
583(16)
17.3 Electric Dipole Moments (EDMs)
599(16)
17.4 Anomalous Magnetic Moments (g -- 2)μ,e
615(6)
17.5 Neutrino Oscillations
621(1)
18 Grand Summary Of New Physics Models
622(6)
18.1 Preliminaries
622(2)
18.2 General Observations on B Physics Anomalies
624(2)
18.3 Tree-Level Mediators
626(1)
18.4 Kaon Physics
626(1)
18.5 Generalities
627(1)
19 Flavor Expedition To The Zeptouniverse
628(13)
19.1 Preliminaries
628(1)
19.2 Basic Requirements for a Successful Zeptouniverse Expedition
629(1)
19.3 Classifying Correlations between Various Observables
630(4)
19.4 DNA Charts
634(5)
19.5 Can We Reach the Zeptouniverse with Rare K and Bs,d Decays?
639(2)
20 Summary And Shopping List
641(25)
Appendix A Dirac Algebra, Spinors, Pauli and Gell-Mann Matrices
647(4)
A.1 Dirac Algebra and Spinors
647(1)
A.2 Pauli and Gell-Mann Matrices
648(1)
A.3 Fierz Identities
649(2)
Appendix B Feynman Rules of the Standard Model
651(3)
B.1 Preliminaries
651(1)
B.2 Gauge Boson Propagators
651(1)
B.3 Fermion and Scalar Propagators
652(1)
B.4 Fermion--Gauge Boson Couplings
652(1)
B.5 Fermion--Goldstone (Higgs) Boson Couplings
652(1)
B.6 Gauge Boson Self-Interactions
653(1)
B.7 Gauge Boson--Goldstone (Higgs) Interactions
653(1)
Appendix C Massive Loop Integrals
654(7)
C.1 Integrals with Two Propagators
654(1)
C.2 Integrals with Three Propagators
655(1)
C.3 Integrals with Four Propagators
656(1)
C.4 More Complicated Integrals
657(4)
Appendix D Numerical Input
661(2)
Appendix E Analytic Solutions to SMEFTRG Equations
663(3)
References 666(49)
Index 715
Andrzej J. Buras is one of the most cited particle theorists in Europe and the most cited theoretical flavour physicist worldwide. He has written extensively on weak decays through lecture notes and review articles. He has been awarded the Smoluchowski-Warburg Medal of German and Polish Physics Societies, a Senior Carl von Linde Fellowship at TUM-IAS and an Advanced ERC Grant. He is an ordinary member of the Bavarian Academy of Sciences and foreign member of two Academies in Poland.