Atjaunināt sīkdatņu piekrišanu

E-grāmata: General Algebraic Semantics for Sentential Logics

(Universitat de Barcelona), (Universitat de Barcelona)
  • Formāts: PDF+DRM
  • Sērija : Lecture Notes in Logic
  • Izdošanas datums: 02-Mar-2017
  • Izdevniecība: Cambridge University Press
  • Valoda: eng
  • ISBN-13: 9781316731574
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 132,04 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Lecture Notes in Logic
  • Izdošanas datums: 02-Mar-2017
  • Izdevniecība: Cambridge University Press
  • Valoda: eng
  • ISBN-13: 9781316731574
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. In this volume, the seventh publication in the Lecture Notes in Logic series, Font and Jansana develop a very general approach to the algebraization of sentential logics and present its results on a number of particular logics. The authors compare their approach, which uses abstract logics, to the classical approach based on logical matrices and the equational consequence developed by Blok, Czelakowski, Pigozzi and others. This monograph presents a systematized account of some of the work on the algebraic study of sentential logics carried out by the logic group in Barcelona in the 1970s.

Papildus informācija

An exposition of the approach to the algebraization of sentential logics developed by the Barcelona logic group.
Introduction 1(14)
Chapter 1 Generalities on abstract logics and sentential logics
15(16)
Chapter 2 Abstract logics as models of sentential logics
31(28)
2.1 Models and full models
31(5)
2.2 S-algebras
36(4)
2.3 The lattice of full models over an algebra
40(5)
2.4 Full models and metalogical properties
45(14)
Chapter 3 Applications to protoalgebraic and algebraizable logics
59(16)
Chapter 4 Abstract logics as models of Gentzen systems
75(30)
4.1 Gentzen systems and their models
76(10)
4.2 Selfextensional logics with Conjunction
86(9)
4.3 Selfextensional logics having the Deduction Theorem
95(10)
Chapter 5 Applications to particular sentential logics
105(26)
5.1 Some non-protoalgebraic logics
107(7)
5.1.1 CPCΛΛ, the {Λ, Λ}-fragment of Classical Logic
107(3)
5.1.2 The logic of lattices
110(1)
5.1.3 Belnap's four-valued logic, and other related logics
111(2)
5.1.4 The implication-less fragment of IPC and its extensions
113(1)
5.2 Some Fregean algebraizable logics
114(3)
5.2.1 Alternative Gentzen systems adequate for IPC→ not having the full Deduction Theorem
116(1)
5.3 Some modal logics
117(4)
5.3.1 A logic without a strongly adequate Gentzen system
121(1)
5.4 Other miscellaneous examples
121(10)
5.4.1 Two relevance logics
122(1)
5.4.2 Sette's paraconsistent logic
123(2)
5.4.3 Tetravalent modal logic
125(1)
5.4.4 Cardinality restrictions in the Deduction Theorem
126(5)
Bibliography 131(12)
Symbol index 143(4)
General index 147
Josep Maria Font works in the Department of Probability, Logic and Statistics at the University of Barcelona. Ramon Jansana works in the Department of Logic, History and Philosophy of Science at the University of Barcelona.