Atjaunināt sīkdatņu piekrišanu

Genetic Programming: 27th European Conference, EuroGP 2024, Held as Part of EvoStar 2024, Aberystwyth, UK, April 35, 2024, Proceedings 2024 ed. [Mīkstie vāki]

Edited by , Edited by , Edited by
  • Formāts: Paperback / softback, 227 pages, height x width: 235x155 mm, 53 Illustrations, color; 16 Illustrations, black and white; X, 227 p. 69 illus., 53 illus. in color., 1 Paperback / softback
  • Sērija : Lecture Notes in Computer Science 14631
  • Izdošanas datums: 17-Apr-2024
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3031569563
  • ISBN-13: 9783031569562
  • Mīkstie vāki
  • Cena: 60,29 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 70,94 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 227 pages, height x width: 235x155 mm, 53 Illustrations, color; 16 Illustrations, black and white; X, 227 p. 69 illus., 53 illus. in color., 1 Paperback / softback
  • Sērija : Lecture Notes in Computer Science 14631
  • Izdošanas datums: 17-Apr-2024
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3031569563
  • ISBN-13: 9783031569562
This book constitutes the refereed proceedings of the 27th European Conference on Genetic Programming, EuroGP 2024, held in Aberystwyth, UK, April 35, 2024 and co-located with the EvoStar events, EvoCOP, EvoMUSART, and EvoApplications.





The 13 papers (9 selected for long presentation and 4 for short presentation) collected in this book were carefully reviewed and selected from 24 submissions. The wide range of topics in this volume reflects the current state of research in the field. The collection of papers cover topics including developing new variants of GP algorithms, as well as exploring GP applications to the optimization of machine learning methods and the evolution of control policies.
Long Presentations.- Fuzzy Pattern Trees for Classification Problems
Using Genetic Programming.- Generational Computation Reduction in Informal
Counterexample-Driven Genetic Programming.- Investigating Premature
Convergence in Co-optimization of Morphology and Control in Evolved Virtual
Soft Robots.- Grammar-based Evolution of Polyominoes.- Naturally
Interpretable Control Policies via Graph-based Genetic
Programming.- DALex: Lexicase-like Selection via Diverse
Aggregation.- Enhancing Large Language Models-based Code Generation by
Leveraging Genetic Improvement.- SLIM GSGP: The Non-Bloating Geometric
Semantic Genetic Programming.- Improving Generalization of
Evolutionary Feature Construction with Minimal Complexity Knee Points in
Regression.- Short Presentations.- Look into the Mirror: Evolving Self-Dual
Bent Boolean Functions.-An Algorithm Based on Grammatical Evolution for
Discovering SHACL Constraints.- A Comprehensive Comparison of Lexicase-Based
Selection Methods for Symbolic Regression Problems.- Improvement of Last
Level Cache.