Atjaunināt sīkdatņu piekrišanu

Geographic Information Science and Systems 4th edition [Mīkstie vāki]

3.61/5 (182 ratings by Goodreads)
(University College London, UK), (City University, London, UK), (Environmental Systems Research Institute, Inc. (ESRI), Redlands, CA, USA), (University of California at Santa Barbara, USA)
  • Formāts: Paperback / softback, 496 pages, height x width x depth: 272x216x25 mm, weight: 1315 g
  • Izdošanas datums: 24-Apr-2015
  • Izdevniecība: John Wiley & Sons Inc
  • ISBN-10: 1118676955
  • ISBN-13: 9781118676950
  • Mīkstie vāki
  • Cena: 232,81 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 496 pages, height x width x depth: 272x216x25 mm, weight: 1315 g
  • Izdošanas datums: 24-Apr-2015
  • Izdevniecība: John Wiley & Sons Inc
  • ISBN-10: 1118676955
  • ISBN-13: 9781118676950
Effective use of todays powerful GIS technology requires an understanding of the science of problem-solving that underpins it. Since the first edition published over a decade ago, this book has led the way, with its focus on the scientific principles that support GIS usage. It has also provided thorough, upto- date coverage of GIS procedures, techniques and public policy applications. This unique combination of science, technology and practical problem solving has made this book a best-seller across a broad spectrum of disciplines. This fully updated 4th edition continues to deliver on these strengths.
Foreword x
Dedication xi
Preface xii
List Of Acronyms
xiv
Introduction
1 Geographic Information: Science, Systems, and Society
1(32)
1.1 Introduction: What Are GI Science and Systems, and Why Do They Matter?
1(8)
1.1.1 The Importance of Location
2(4)
1.1.2 Spatial Is Special
6(3)
1.2 Data, Information, Evidence, Knowledge, and Wisdom
9(2)
1.3 GI Science and Systems
11(3)
1.4 The Technology of Problem Solving
14(2)
1.5 The Disciplinary Setting of GI Science and Systems (GISS)
16(14)
1.5.1 The Historical Perspective
18(1)
1.5.2 The Business Perspective
19(4)
1.5.3 The Government Perspective
23(1)
1.5.4 Computer-Science and Information-Science Perspectives
24(1)
1.5.5 The Geography Perspective
25(2)
1.5.6 The Societal Perspective
27(3)
1.6 GI Science and Spatial Thinking
30(1)
1.7 GI Systems and Science in Society
31(2)
Questions for Further Study
32(1)
Further Reading
32(1)
1 Principles
2 The Nature of Geographic Data
33(22)
2.1 Introduction
33(1)
2.2 The Fundamental Problem
34(3)
2.3 Spatial Autocorrelation and Scale
37(2)
2.4 Spatial Sampling
39(3)
2.5 Sampling and VGI
42(1)
2.6 Distance Decay
43(5)
2.7 Measuring Distance Effects as Spatial Autocorrelation
48(3)
2.8 Taming Geographic Monsters
51(2)
2.9 Induction and Deduction and How It All Comes Together
53(2)
Questions for Further Study
54(1)
Further Reading
54(1)
3 Representing Geography
55(22)
3.1 Introduction
55(2)
3.2 Digital Representation
57(1)
3.3 Representation of What and for Whom?
58(3)
3.4 The Fundamental Problem
61(1)
3.5 Discrete Objects and Continuous Fields
62(4)
3.5.1 Discrete Objects
62(2)
3.5.2 Continuous Fields
64(2)
3.6 Rasters and Vectors
66(3)
3.6.1 Raster Data
67(1)
3.6.2 Vector Data
68(1)
3.6.3 Representing Continuous Fields
68(1)
3.7 The Paper Map
69(2)
3.8 Generalization
71(5)
3.8.1 Generalization about Places
71(3)
3.8.2 Generalization about Properties
74(2)
3.9 Conclusion
76(1)
Questions for Further Study
76(1)
Further Reading
76(1)
4 Georeferencing
77(22)
4.1 Introduction
77(3)
4.2 Place-Names and Points of Interest
80(2)
4.3 Postal Addresses and Postal Codes
82(2)
4.4 IP Addresses
84(1)
4.5 Linear Referencing Systems
84(1)
4.6 Cadasters and the U.S. Public Land Survey System
85(1)
4.7 Measuring the Earth: Latitude and Longitude
86(2)
4.8 Projections and Coordinates
88(6)
4.8.1 The Plate Carree or Cylindrical Equidistant Projection
91(1)
4.8.2 The Universal Transverse Mercator (UTM) Projection
92(1)
4.8.3 Web Mercator
93(1)
4.8.4 State Plane Coordinates and Other Local Systems
94(1)
4.9 Measuring Latitude, Longitude, and Elevation: GPS
94(1)
4.10 Converting Georeferences
95(1)
4.11 Geotagging and Mashups
96(1)
4.12 Georegistration
96(2)
4.13 Summary
98(1)
Questions for Further Study
98(1)
Further Reading
98(1)
5 Uncertainty
99(29)
5.1 Introduction
99(2)
5.2 U1: Uncertainty in the Conception of Geographic Phenomena
101(10)
5.2.1 Conceptions of Place: Units of Analysis
101(3)
5.2.2 Conceptions of Attributes: Vagueness and Ambiguity
104(4)
5.2.3 Fuzzy Approaches to Attribute Classification
108(3)
5.3 U2: Further Uncertainty in the Representation of Geographic Phenomena
111(6)
5.3.1 Representation of Place/Location
111(1)
5.3.2 Statistical Models of Uncertainty in Attribute Measures
112(5)
5.3.3 Statistical Models of Uncertainty in Location Measures
117(1)
5.4 U3: Further Uncertainty in the Analysis of Geographic Phenomena
117(9)
5.4.1 Internal and External Validation through Spatial Analysis
117(1)
5.4.2 Validation through Autocorrelation: The Spatial Structure of Errors
118(4)
5.4.3 Validation through Investigating the Effects of Aggregation and Scale
122(1)
5.4.4 Validation with Reference to External Sources: Data Integration and Shared Lineage
123(1)
5.4.5 Internal and External Validation; Induction and Deduction
124(2)
5.5 Consolidation
126(2)
Questions for Further Study
127(1)
Further Reading
127(1)
2 Techniques
6 GI System Software
128(24)
6.1 Introduction
128(1)
6.2 The Evolution of GI System Software
129(2)
6.3 Architecture of GI System Software
131(5)
6.3.1 Project, Departmental, and Enterprise GI Systems
131(1)
6.3.2 The Three-Tier Architecture
131(2)
6.3.3 Software Data Models and Customization
133(1)
6.3.4 GI Systems on the Desktop, on the Web, and in the Cloud
134(2)
6.4 Building GI Software Systems
136(1)
6.5 GI Software Vendors
137(3)
6.5.1 Autodesk
137(1)
6.5.2 Bentley
137(1)
6.5.3 Esri
138(1)
6.5.4 Intergraph
139(1)
6.6 Types of GI Systems
140(10)
6.6.1 Desktop Systems
140(2)
6.6.2 Web Mapping Systems
142(1)
6.6.3 Server GI Systems
142(4)
6.6.4 Virtual Globes
146(1)
6.6.5 Developer GI Systems
147(1)
6.6.6 Mobile GI Systems
148(1)
6.6.7 Other types of GI Software
149(1)
6.7 Conclusion
150(2)
Questions for Further Study
151(1)
Further Reading
151(1)
7 Geographic Data Modeling
152(21)
7.1 Introduction
152(2)
7.1.1 Data Model Overview
152(1)
7.1.2 Levels of Data Model Abstraction
153(1)
7.2 GI Data Models
154(14)
7.2.1 CAD, Graphical, and Image Data Models
155(1)
7.2.2 Raster Data Model
155(2)
7.2.3 Vector Data Model
157(7)
7.2.4 Object Data Model
164(4)
7.3 Example of a Water-Facility Object Data Model
168(2)
7.4 Geographic Data Modeling in Practice
170(3)
Questions for Further Study
172(1)
Further Reading
172(1)
8 Data Collection
173(21)
8.1 Introduction
173(2)
8.1.1 Data Collection Workflow
175(1)
8.2 Primary Geographic Data Capture
175(6)
8.2.1 Raster Data Capture
175(4)
8.2.2 Vector Data Capture
179(2)
8.3 Secondary Geographic Data Capture
181(6)
8.3.1 Raster Data Capture Using Scanners
181(2)
8.3.2 Vector Data Capture
183(4)
8.4 Obtaining Data from External Sources (Data Transfer)
187(3)
8.4.1 Geographic Data Formats
189(1)
8.5 Capturing Attribute Data
190(1)
8.6 Citizen-Centric Web-Based Data Collection
190(1)
8.7 Managing a Data Collection Project
191(3)
Questions for Further Study
193(1)
Further Reading
193(1)
9 Creating and Maintaining Geographic Databases
194(23)
9.1 Introduction
194(1)
9.2 Database Management Systems
195(3)
9.2.1 Types of DBMSs
196(1)
9.2.2 Geographic DBMS Extensions
197(1)
9.3 Storing Data in DBMS Tables
198(3)
9.4 SQL
201(1)
9.5 Geographic Database Types and Functions
202(3)
9.6 Geographic Database Design
205(1)
9.6.1 The Database Design Process
205(1)
9.7 Structuring Geographic Information
206(6)
9.7.1 Topology Creation
206(2)
9.7.2 Indexing
208(4)
9.8 Editing and Data Maintenance
212(1)
9.9 Multiuser Editing of Continuous Databases
213(1)
9.9.1 Transactions
213(1)
9.9.2 Versioning
213(1)
9.10 Conclusion
214(3)
Questions for Further Study
216(1)
Further Reading
216(1)
10 The Geo Web
217(20)
10.1 Introduction
217(5)
10.2 Distributing the Data
222(5)
10.2.1 Object-Level Metadata
223(2)
10.2.2 Geolibraries and Geoportals
225(2)
10.3 The Mobile User
227(6)
10.3.1 Virtual Reality and Augmented Reality
228(2)
10.3.2 Location-Based Services
230(2)
10.3.3 Issues in Mobile GIS
232(1)
10.4 Distributing the Software: GI Services
233(2)
10.4.1 Service-Oriented Architecture
234(1)
10.5 Prospects
235(2)
Questions for Further Study
236(1)
Further Reading
236(1)
11 Analysis Cartography and Map Production
237(29)
11.1 Introduction
237(4)
11.2 Maps and Cartography
241(5)
11.2.1 Maps and Media
245(1)
11.3 Principles of Map Design
246(11)
11.3.1 Map Composition
247(1)
11.3.2 Map Symbolization
248(9)
11.4 Map Series
257(4)
11.5 Applications
261(4)
11.6 Conclusion
265(1)
Questions for Further Study
265(1)
Further Reading
265(1)
12 Geovisualization
266(24)
12.1 Introduction: Uses, Users, Messages, and Media
266(2)
12.2 Geovisualization, Spatial Query, and User Interaction
268(6)
12.2.1 Overview
268(3)
12.2.2 Spatial Query Online and the Geoweb
271(3)
12.3 Geovisualization and Transformation
274(6)
12.3.1 Overview
274(2)
12.3.2 Cartograms
276(2)
12.3.3 Remodeling Spatial Distributions as Dasymetric Maps
278(2)
12.4 Participation, Interaction, Augmentation, and Dynamic Representation
280(8)
12.4.1 Public Participation and Participatory GI Systems (PPGIS)
280(2)
12.4.2 User Interaction and Representation in 2.5-D and 3-D
282(2)
12.4.3 Handheld Computing and Augmented Reality
284(1)
12.4.4 Visualizing Geotemporal Dynamics
285(3)
12.5 Consolidation
288(2)
Questions for Further Study
289(1)
Further Reading
289(1)
13 Spatial Data Analysis
290(29)
13.1 Introduction: What Is Spatial Analysis?
290(5)
13.1.1 Examples
292(3)
13.2 Analysis Based on Location
295(9)
13.2.1 Analysis of Attribute Tables
296(3)
13.2.2 Spatial Joins
299(1)
13.2.3 The Point-in-Polygon Operation
300(1)
13.2.4 Polygon Overlay
301(2)
13.2.5 Raster Analysis
303(1)
13.3 Analysis Based on Distance
304(13)
13.3.1 Measuring Distance and Length
304(2)
13.3.2 Buffering
306(2)
13.3.3 Cluster Detection
308(1)
13.3.4 Dependence at a Distance
309(1)
13.3.5 Density Estimation
310(3)
13.3.6 Spatial Interpolation
313(4)
13.4 Conclusion
317(2)
Questions for Further Study
318(1)
Further Reading
318(1)
14 Spatial Analysis and Inference
319(20)
14.1 The Purpose of Area-Based Analyses
319(2)
14.1.1 Measurement of Area
319(1)
14.1.2 Measurement of Shape
320(1)
14.2 Centrality
321(3)
14.2.1 Centers
322(2)
14.2.2 Dispersion
324(1)
14.3 Analysis of Surfaces
324(5)
14.3.1 Slope and Aspect
324(2)
14.3.2 Modeling Travel on a Surface
326(1)
14.3.3 Computing Watersheds and Channels
327(1)
14.3.4 Computing Visibility
328(1)
14.4 Design
329(5)
14.4.1 Point Location
330(2)
14.4.2 Routing Problems
332(2)
14.5 Hypothesis Testing
334(3)
14.5.1 Hypothesis Tests on Geographic Data
335(2)
14.6 Conclusion
337(2)
Questions for Further Study
338(1)
Further Reading
338(1)
15 Spatial Modeling with GI Systems
339(19)
15.1 Introduction
339(4)
15.1.1 Why Model?
341(1)
15.1.2 To Analyze or to Model?
342(1)
15.2 Types of Models
343(8)
15.2.1 Static Models and Indicators
343(1)
15.2.2 Individual and Aggregate Models
343(4)
15.2.3 Cellular Models
347(2)
15.2.4 Cartographic Modeling and Map Algebra
349(2)
15.3 Technology for Modeling
351(1)
15.3.1 Operationalizing Models in GI Systems
351(1)
15.3.2 Model Coupling
351(1)
15.3.3 Cataloging and Sharing Models
352(1)
15.4 Multicriteria Methods
352(2)
15.5 Accuracy and Validity: Testing the Model
354(2)
15.6 Conclusion
356(2)
Questions for Further Study
357(1)
Further Reading
357(1)
16 Policy, Management, and Action Managing GI Systems
358(23)
16.1 Introduction
359(1)
16.2 Managing Risk
359(1)
16.3 The Case for the GI System: ROI
360(6)
16.4 The Process of Developing a Sustainable GI System
366(12)
16.4.1 Choosing a GI System: The Classical Acquisition Model
368(5)
16.4.2 Implementing a GI System
373(2)
16.4.3 Managing a Sustainable, Operational GI System
375(3)
16.5 Sustaining a GI System---The People and Their Competences
378(2)
16.5.1 GI System Staff and the Teams Involved
378(1)
16.5.2 Project Managers
379(1)
16.5.3 Coping with Uncertainty
379(1)
16.6 Conclusions
380(1)
Questions for Further Study
380(1)
Further Reading
380(1)
17 Information and Decision Making
381(30)
17.1 Why We Need Information
381(5)
17.1.1 Trade-Offs, Uncertainty, and Risk
383(1)
17.1.2 Organizational Drivers
383(3)
17.2 Information as Infrastructure
386(5)
17.2.1 Information for Management
387(4)
17.3 Different Forms of GI
391(13)
17.3.1 GI about Individuals
394(8)
17.3.2 More Novel Forms of GI
402(1)
17.3.3 The Changing World of GI
402(2)
17.4 Open Data and Open Government
404(2)
17.4.1 The Metadata Issue
405(1)
17.5 Example of an Information Infrastructure: The Military
406(3)
17.5.1 Technological Change and the Military
406(1)
17.5.2 The Military Information Infrastructure
407(1)
17.5.3 Civilian Spin-Offs
408(1)
17.6 Conclusions
409(2)
Questions for Further Study
410(1)
Further Reading
410(1)
18 Navigating the Risks
411(24)
18.1 Clashes Between Scientists and the Judiciary
412(1)
18.2 Business Models for GI-Related Enterprises
412(2)
18.3 Legal and Regulatory Constraints
414(7)
18.3.1 Geography and the Law
414(1)
18.3.2 Three Aspects of the Law and GI
415(6)
18.4 Privacy and GI Systems
421(3)
18.4.1 Preserving Privacy without Losing the Use of Personal Information
422(2)
18.5 Public Trust, Ethics, and Coping with the Media
424(2)
18.5.1 Public Trust
424(1)
18.5.2 Ethics
425(1)
18.5.3 Coping with the Media
426(1)
18.6 Partnerships, Up-Scaling Activities, and Risk Mitigation
426(6)
18.6.1 Spatial Data Infrastructures: The U.S. Experience
427(2)
18.6.2 INSPIRE
429(1)
18.6.3 UN Initiative on Global Geospatial Information Management
430(1)
18.6.4 Have SDIs Worked?
430(2)
18.7 Coping with Spatial Stupidity
432(1)
18.8 Conclusions
433(2)
Questions for Further Study
434(1)
Further Reading
434(1)
19 Epilog: GISS in the Service of Humanity
435(26)
19.1 GISS, the Active Citizen, and Citizen Scientists
435(2)
19.1.1 Who Can Help?
436(1)
19.1.2 Areas Where GISS Contributes
437(1)
19.2 Context: Our Differentiated World
437(3)
19.3 Context: Our Interdependent World
440(1)
19.4 The Process
441(2)
19.4.1 Stage 1: Defining and Describing the Issue
442(1)
19.4.2 Stage 2: Analyzing and Modeling Spatial Interrelationships
442(1)
19.4.3 Stage 3: Devising Possible Solutions
442(1)
19.4.4 Communicating Results and Possible Solutions to Decision Makers
443(1)
19.4.5 Stage 5: Reflect, Learn, and Educate
443(1)
19.5 The Grand Challenges
443(2)
19.6 Grand Challenges Whose Effects We Can Help to Ameliorate
445(14)
19.6.1 Population Growth
445(1)
19.6.2 Poverty and Hunger
446(2)
19.6.3 Human Health
448(4)
19.6.4 Access to Food, Potable Water, and Boundary Disputes
452(1)
19.6.5 Coping with Natural Disasters
453(3)
19.6.6 Coping with Terrorism, Crime, and Warfare
456(1)
19.6.7 Environmental Sustainability
456(3)
19.7 Conclusions
459(2)
Questions For Further Study
460(1)
Further Reading
460(1)
Index 461
Professor Paul Longley, Department of Geography, University College London, UK.

Professor Mike Goodchild, Department of Geography, University of California Santa Barbara, USA.

Professor David Maguire, ESRI, Redlands, USA.

Professor David Rhind, Vice Chancellor and Principle, City University, London, UK.