Atjaunināt sīkdatņu piekrišanu

Geometric Analysis: Cetraro, Italy 2018 1st ed. 2020 [Mīkstie vāki]

  • Formāts: Paperback / softback, 146 pages, height x width: 235x155 mm, weight: 454 g, 1 Illustrations, color; 13 Illustrations, black and white; IX, 146 p. 14 illus., 1 illus. in color., 1 Paperback / softback
  • Sērija : C.I.M.E. Foundation Subseries 2263
  • Izdošanas datums: 21-Aug-2020
  • Izdevniecība: Springer Nature Switzerland AG
  • ISBN-10: 3030537242
  • ISBN-13: 9783030537241
  • Mīkstie vāki
  • Cena: 51,37 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 60,44 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 146 pages, height x width: 235x155 mm, weight: 454 g, 1 Illustrations, color; 13 Illustrations, black and white; IX, 146 p. 14 illus., 1 illus. in color., 1 Paperback / softback
  • Sērija : C.I.M.E. Foundation Subseries 2263
  • Izdošanas datums: 21-Aug-2020
  • Izdevniecība: Springer Nature Switzerland AG
  • ISBN-10: 3030537242
  • ISBN-13: 9783030537241
This book covers recent advances in several important areas of geometric analysis including extremal eigenvalue problems, mini-max methods in minimal surfaces, CR geometry in dimension three, and the Ricci flow and Ricci limit spaces. An output of the CIME Summer School "Geometric Analysis" held in Cetraro in 2018, it offers a collection of lecture notes prepared by Ailana Fraser (UBC), André Neves (Chicago), Peter M. Topping (Warwick), and Paul C. Yang (Princeton). 

These notes will be a valuable asset for researchers and advanced graduate students in geometric analysis. 
- Extremal Eigenvalue Problems and Free Boundary Minimal Surfaces in the
Ball. - Applications of MinMax Methods to Geometry. - Ricci Flow and Ricci
Limit Spaces. - Pseudo-Hermitian Geometry in 3D.