Atjaunināt sīkdatņu piekrišanu

Geometric Analysis: In Honor of Gang Tian's 60th Birthday 2020 ed. [Mīkstie vāki]

Edited by , Edited by , Edited by , Edited by
  • Formāts: Paperback / softback, 616 pages, height x width: 235x155 mm, weight: 949 g, 8 Illustrations, color; 17 Illustrations, black and white; X, 616 p. 25 illus., 8 illus. in color., 1 Paperback / softback
  • Sērija : Progress in Mathematics 333
  • Izdošanas datums: 11-Apr-2021
  • Izdevniecība: Springer Nature Switzerland AG
  • ISBN-10: 3030349551
  • ISBN-13: 9783030349554
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 136,16 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 160,19 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 616 pages, height x width: 235x155 mm, weight: 949 g, 8 Illustrations, color; 17 Illustrations, black and white; X, 616 p. 25 illus., 8 illus. in color., 1 Paperback / softback
  • Sērija : Progress in Mathematics 333
  • Izdošanas datums: 11-Apr-2021
  • Izdevniecība: Springer Nature Switzerland AG
  • ISBN-10: 3030349551
  • ISBN-13: 9783030349554
Citas grāmatas par šo tēmu:
This edited volume has a two-fold purpose. First, comprehensive survey articles provide a way for beginners to ease into the corresponding sub-fields. These are then supplemented by original works that give the more advanced readers a glimpse of the current research in geometric analysis and related PDEs.

The book is of significant interest for researchers, including advanced Ph.D. students, working in geometric analysis. Readers who have a secondary interest in geometric analysis will benefit from the survey articles.

The results included in this book will stimulate further advances in the subjects: geometric analysis, including complex differential geometry, symplectic geometry, PDEs with a geometric origin, and geometry related to topology.

Contributions by Claudio Arezzo, Alberto Della Vedova, Werner Ballmann, Henrik Matthiesen, Panagiotis Polymerakis, Sun-Yung A. Chang, Zheng-Chao Han, Paul Yang, Tobias Holck Colding, William P. Minicozzi II, Panagiotis Dimakis, Richard Melrose, Akito Futaki, Hajime Ono, Jiyuan Han, Jeff A. Viaclovsky, Bruce Kleiner, John Lott, Sawomir Koodziej, Ngoc Cuong Nguyen, Chi Li, Yuchen Liu, Chenyang Xu, YanYan Li, Luc Nguyen, Bo Wang, Shiguang Ma, Jie Qing, Xiaonan Ma, Sean Timothy Paul, Kyriakos Sergiou, Tristan Rivičre, Yanir A. Rubinstein, Natasa Sesum, Jian Song, Jeffrey Streets, Neil S. Trudinger, Yu Yuan, Weiping Zhang, Xiaohua Zhu and Aleksey Zinger.
Preface.- Big and nef classes, Futaki Invariant and resolutions of cubic
threefolds.- Bottom of spectra and amenability of coverings.- Some remarks on
the geometry of a class of locally conformally at metrics.- Analytical
properties for degenerate equations.- On the existence problem of
Einstein-Maxwell Kähler Metrics.- Local moduli of scalar-flat Kähler ale
surfaces.- Singular Ricci flows II.- An inequality between complex Hessian
measures of Hölder continuous m-subharmonic functions and capacity.- A guided
tour to normalized volume.- Towards a Liouville theorem for continuous
viscosity solutions to fully nonlinear elliptic equations in conformal
geometry.- Equivariant K-theory and Resolution I: Abelian actions.-
Arsove-Hubers Theorem in Higher Dimensions.- From local index theory to
Bergman kernel: a heat kernel approach.- Fourier-Mukai Transforms,
Euler-Green Currents, and K-Stability.- The Variations of Yang-Mills
Lagrangian.- Tians properness conjectures: an introduction to Kähler
geometry.- Ancient solutions in geometric flows.- The Kähler-Ricci flow on
CP2.- Pluriclosed flow and the geometrization of complex surfaces.- From
Optimal Transportation to Conformal Geometry.- Special Lagrangian Equation.-
Positive scalar curvature on foliations: the enlargeability.- Kähler-Einstein
metrics on toric manifolds and G-manifolds.- Some Questions in the Theory of
Pseudoholomorphic Curves.