Atjaunināt sīkdatņu piekrišanu

E-grāmata: Geometric Inverse Problems: With Emphasis on Two Dimensions

(University of Cambridge), (University of Jyväskylä, Finland), (University of Washington)
  • Formāts - PDF+DRM
  • Cena: 65,42 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This up-to-date treatment of recent developments in geometric inverse problems introduces graduate students and researchers to an exciting area of research. With an emphasis on the two-dimensional case, topics covered include geodesic X-ray transforms, boundary rigidity, tensor tomography, attenuated X-ray transforms and the Calderón problem. The presentation is self-contained and begins with the Radon transform and radial sound speeds as motivating examples. The required geometric background is developed in detail in the context of simple manifolds with boundary. An in-depth analysis of various geodesic X-ray transforms is carried out together with related uniqueness, stability, reconstruction and range characterization results. Highlights include a proof of boundary rigidity for simple surfaces as well as scattering rigidity for connections. The concluding chapter discusses current open problems and related topics. The numerous exercises and examples make this book an excellent self-study resource or text for a one-semester course or seminar.

Recenzijas

'This monograph gives a beautiful introduction to Geometric inverse problems, largely in dimension two, by three of the most prominent contributors to the field. The Geometric problems are interesting as pure mathematics, but they also arise from applications to tomography, such as the Calderon problem of determining (M, g) from its Dirichlet-to-Neumann map. Roughly speaking, the underlying physics problem is to determine electrical properties of a medium by making voltage and current measurements on the boundary. Techniques of microlocal analysis relate such PDE boundary inverse problems to geometric inverse problems. These inverse problems furnish problems of great interest in PDE and in geometry in a rather concrete setting, and are masterfully conveyed by the authors. The level is appropriate for a graduate class in mathematics but is also an excellent entrée into the field for research mathematicians.' Steve Zelditch, Northwestern University

Papildus informācija

Cutting-edge mathematical tools are used in this treatment of recent developments in geometric inverse problems.
Foreword Andrįs Vasy; Preface;
1. The Radon transform in the plane;
2.
Radial sound speeds;
3. Geometric preliminaries;
4. The geodesic X-ray
transform;
5. Regularity results for the transport equation;
6. Vertical
Fourier analysis;
7. The X-ray transform in non-positive curvature;
8.
Microlocal aspects, surjectivity of $I^{*}_{0}$;
9. Inversion formulas and
range;
10. Tensor tomography;
11. Boundary rigidity;
12. The attenuated
geodesic X-ray transform;
13. Non-Abelian X-ray transforms;
14. Non-Abelian
X-ray transforms II;
15. Open problems and related topics; References; Index.
Gabriel P. Paternain is Professor of Mathematics at the Department of Pure Mathematics and Mathematical Statistics at the University of Cambridge and a Fellow of Trinity College. His research has covered an ample mathematical landscape, including Hamiltonian dynamics, symplectic geometry and geometric inverse problems. He is the author of the monograph 'Geodesic Flows' (1999), and was awarded the Pilkington Teaching Prize at Cambridge for his ability to explain analysis and geometry with a clarity that has won him the admiration and respect of his students. Mikko Salo is Professor of Mathematics at the University of Jyväskylä, Finland. He has received several awards for his work on inverse problems in partial differential equations and geometry, including the Calderón prize, the Väisälä prize, an ERC Starting Grant and an ERC Consolidator Grant. Gunther Uhlmann is the Walker Family Endowed Professor at the University of Washington and the Si Yuan Professor at the Hong Kong University of Science and Technology. He has worked on microlocal analysis and a broad spectrum of inverse problems. He was awarded the AMS Bocher Prize, the Kleinman Prize from SIAM, the Solomon Lefschetz Medal from the Mathematical Council of the Americas and the Birkhoff Prize, awarded jointly by SIAM and the AMS.