Atjaunināt sīkdatņu piekrišanu

Geometric Methods in PDEs 1st ed. 2015 [Hardback]

Edited by , Edited by , Edited by , Edited by , Edited by
  • Formāts: Hardback, 373 pages, height x width: 235x155 mm, weight: 7037 g, 7 Illustrations, color; 1 Illustrations, black and white; XIII, 373 p. 8 illus., 7 illus. in color., 1 Hardback
  • Sērija : Springer INdAM Series 13
  • Izdošanas datums: 23-Oct-2015
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3319026658
  • ISBN-13: 9783319026657
  • Hardback
  • Cena: 91,53 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 107,69 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 373 pages, height x width: 235x155 mm, weight: 7037 g, 7 Illustrations, color; 1 Illustrations, black and white; XIII, 373 p. 8 illus., 7 illus. in color., 1 Hardback
  • Sērija : Springer INdAM Series 13
  • Izdošanas datums: 23-Oct-2015
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3319026658
  • ISBN-13: 9783319026657

The analysis of PDEs is a prominent discipline in mathematics research, both in terms of its theoretical aspects and its relevance in applications. In recent years, the geometric properties of linear and nonlinear second order PDEs of elliptic and parabolic type have been extensively studied by many outstanding researchers. This book collects contributions from a selected group of leading experts who took part in the INdAM meeting "Geometric methods in PDEs", on the occasion of the 70th birthday of Ermanno Lanconelli. They describe a number of new achievements and/or the state of the art in their discipline of research, providing readers an overview of recent progress and future research trends in PDEs. In particular, the volume collects significant results for sub-elliptic equations, potential theory and diffusion equations, with an emphasis on comparing different methodologies and on their implications for theory and applications.

On Friedrichs Commutators Lemma for Hardy Spaces and Applications
1(14)
Jorge Hounie
On the Hardy Constant of Some Non-convex Planar Domains
15(28)
Gerassimos Barbatis
Achilles Tertikas
Sharp Singular Trudinger-Moser-Adams Type Inequalities with Exact Growth
43(38)
Nguyen Lam
Guozhen Lu
A Quantitative Lusin Theorem for Functions in BV
81(8)
Andras Telcs
Vincenzo Vespri
X-Elliptic Harmonic Maps
89(22)
Sorin Dragomir
Sum Operators and Fefferman-Phong Inequalities
111(10)
Giuseppe Di Fazio
Maria Stella Fanciullo
Pietro Zamboni
LP-Parabolic Regularity and Non-degenerate Ornstein-Uhlenbeck Type Operators
121(20)
Enrico Priola
Local Solvability of Nonsmooth Hormander's Operators
141(18)
Marco Bramanti
Multiple Solutions for an Eigenvalue Problem Involving Non-local Elliptic p-Laplacian Operators
159(18)
Patrizia Pucci
Sara Saldi
Uniqueness of Solutions of a Class of Quasilinear Subelliptic Equations
177(22)
Lorenzo D'Ambrosio
Enzo Mitidieri
Liouville Type Theorems for Non-linear Differential Inequalities on Carnot Groups
199(16)
Luca Brandolini
Marco Magliaro
Modica Type Gradient Estimates for Reaction-Diffusion Equations
215(28)
Agnid Banerjee
Nicola Garofalo
A Few Recent Results on Fully Nonlinear PDE's
243(14)
Italo Capuzzo Dolcetta
Holder Regularity of the Gradient for Solutions of Fully Nonlinear Equations with Sub Linear First Order Term
257(12)
Isabeau Birindelli
Francoise Demengel
The Reflector Problem and the Inverse Square Law
269(18)
Cristian E. Gutierrez
Ahmad Sabra
Gagliardo-Nirenberg Inequalities for Horizontal Vector Fields in the Engel Group and in the Seven-Dimensional Quaternionic Heisenberg Group
287(26)
Annalisa Baldi
Bruno Franchi
Francesca Tripaldi
Regularity of the Free Boundary in Problems with Distributed Sources
313(28)
Daniela De Silva
Fausto Ferrari
Sandro Salsa
The Role of Fundamental Solution in Potential and Regularity Theory for Subelliptic PDE
341
Andrea Bonfiglioli
Giovanna Citti
Giovanni Cupini
Maria Manfredini
Annamaria Montanari
Daniele Morbidelli
Andrea Pascucci
Sergio Polidoro
Francesco Uguzzoni