Atjaunināt sīkdatņu piekrišanu

Geometric Structures of Statistical Physics, Information Geometry, and Learning: SPIGL'20, Les Houches, France, July 2731 2021 ed. [Mīkstie vāki]

  • Formāts: Paperback / softback, 459 pages, height x width: 235x155 mm, weight: 724 g, 63 Illustrations, color; 24 Illustrations, black and white; XIII, 459 p. 87 illus., 63 illus. in color., 1 Paperback / softback
  • Sērija : Springer Proceedings in Mathematics & Statistics 361
  • Izdošanas datums: 28-Jun-2022
  • Izdevniecība: Springer Nature Switzerland AG
  • ISBN-10: 3030779599
  • ISBN-13: 9783030779597
  • Mīkstie vāki
  • Cena: 252,18 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 296,69 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 459 pages, height x width: 235x155 mm, weight: 724 g, 63 Illustrations, color; 24 Illustrations, black and white; XIII, 459 p. 87 illus., 63 illus. in color., 1 Paperback / softback
  • Sērija : Springer Proceedings in Mathematics & Statistics 361
  • Izdošanas datums: 28-Jun-2022
  • Izdevniecība: Springer Nature Switzerland AG
  • ISBN-10: 3030779599
  • ISBN-13: 9783030779597

Machine learning and artificial intelligence increasingly use methodological tools rooted in statistical physics. Conversely, limitations and pitfalls encountered in AI question the very foundations of statistical physics. This interplay between AI and statistical physics has been attested since the birth of AI, and principles underpinning statistical physics can shed new light on the conceptual basis of AI. During the last fifty years, statistical physics has been investigated through new geometric structures allowing covariant formalization of the thermodynamics. Inference methods in machine learning have begun to adapt these new geometric structures to process data in more abstract representation spaces.

This volume collects selected contributions on the interplay of statistical physics and artificial intelligence. The aim is to provide a constructive dialogue around a common foundation to allow the establishment of new principles and laws governing these two disciplines in a unified manner. The contributions were presented at the workshop on the Joint Structures and Common Foundation of Statistical Physics, Information Geometry and Inference for Learning which was held in Les Houches in July 2020. The various theoretical approaches are discussed in the context of potential applications in cognitive systems, machine learning, signal processing.

PART 1: Tribute to Jean-Marie Souriau seminal works: G. de Saxcé and
C.-M. Marle, Structure des Systčmes Dynamiques.- Jean-Marie Souriaus book
50th birthday.-  F. Barbaresco, Jean-Marie Souriaus Symplectic Model of
Statistical Physics : Seminal papers on Lie Groups Thermodynamics - Quod Erat
Demonstrandum.- PART 2: Lie Group Geometry & Diffeological Model of
Statistical Physics and Information Geometry: F. Barbaresco - Souriau-Casimir
Lie Groups Thermodynamics & Machine Learning.- K. Tojo and T. Yoshino, An
exponential family on the upper half plane and its conjugate prior.- E.
Chevallier and N. Guigui, Wrapped statistical models on manifolds:
motivations, the case SE(n), and generalization to symmetric spaces.- G. de
Saxcé, Galilean Thermodynamics of Continua.- H. Vān Lź and A. Tuzhilin,
Nonparametric estimations and the diffeological Fisher metric.- PART 3:
Advanced Geometrical Models of Statistical Manifolds in Information Geometry:
J.-P. Francoise, Information Geometry and Integrable Hamiltonian Systems.- M.
N. Boyom, Relevant Differential topology in statistical manifolds.- G.
Pistone, A lecture about the use of Orlicz Spaces in Information Geometry.-
F. Nielsen and G. Hadjeres, Quasiconvex Jensen divergences and quasiconvex
Bregman divergences.- PART 4: Geometric Structures of Mechanics,
Thermodynamics & Inference for Learning: F. Gay-Balmaz and H. Yoshimura,
Dirac Structures and Variational Formulation of Thermodynamics for Open
Systems.- A. A. Simoes, D. Martķn de Diego, M. L. Valcįzar and Manuel de
León, The geometry of some thermodynamic systems.- F. Chinesta, E. Cueto, M.
Grmela, B. Mioya, M. Pavelka and M. Sipka, Learning Physics from Data: a
Thermodynamic Interpretation.- Z. Terze, V. Panda, M. Andri and D. Zlatar,
Computational dynamics of reduced coupled multibody-fluid system in Lie group
setting.- F. Masi, I. Stefanou, P. Vannucci and V. Maffi-Berthier, Material
modeling via Thermodynamics-based Artificial Neural Networks.- K. Grosvenor,
Information Geometry and Quantum Fields.- PART 5: Hamiltonian Monte Carlo,
HMC Sampling and Learning on Manifolds: A. Barp, The Geometric Integration of
Measure-Preserving Flows for Sampling and Hamiltonian Monte Carlo.- A. Fradi,
I. Adouani and C. Samir, Bayesian inference on local distributions of
functions and multidimensional curves with spherical HMC sampling.- S.
Huntsman, Sampling and Statistical Physics via Symmetry.- T. Gerald, H.
Zaatiti and H. Hajri, A Practical hands-on for learning Graph Data
Communities on Manifolds.