Introduction |
|
viii | |
|
PART I TOPOLOGICAL PRELIMINARIES |
|
|
1 | (20) |
|
|
3 | (7) |
|
|
3 | (2) |
|
1.2 Comparing Topological Spaces |
|
|
5 | (3) |
|
|
8 | (1) |
|
1.4 Bibliographical Notes |
|
|
9 | (1) |
|
|
10 | (11) |
|
2.1 Geometric Simplicial Complexes |
|
|
10 | (1) |
|
2.2 Abstract Simplicial Complexes |
|
|
11 | (2) |
|
|
13 | (1) |
|
2.4 Filtrations of Simplicial Complexes |
|
|
14 | (1) |
|
2.5 Vietoris-Rips and Cech Filtrations |
|
|
15 | (1) |
|
2.6 Combinatorial Manifolds Triangulations |
|
|
16 | (1) |
|
2.7 Representation of Simplicial Complexes |
|
|
17 | (2) |
|
|
19 | (1) |
|
2.9 Bibliographical Notes |
|
|
20 | (1) |
|
PART II DELAUNAY COMPLEXES |
|
|
21 | (92) |
|
|
23 | (21) |
|
|
23 | (3) |
|
|
26 | (3) |
|
|
29 | (2) |
|
3.4 Convex Hull Algorithms |
|
|
31 | (10) |
|
|
41 | (2) |
|
3.6 Bibliographical Notes |
|
|
43 | (1) |
|
|
44 | (25) |
|
4.1 Lower Envelopes and Minimization Diagrams |
|
|
44 | (1) |
|
|
45 | (2) |
|
|
47 | (5) |
|
4.4 Weighted Delaunay Complexes |
|
|
52 | (5) |
|
4.5 Examples of Weighted Voronoi Diagrams |
|
|
57 | (7) |
|
|
64 | (4) |
|
4.7 Bibliographical Notes |
|
|
68 | (1) |
|
|
69 | (29) |
|
|
70 | (7) |
|
|
77 | (5) |
|
5.3 Thick Triangulations via Weighting |
|
|
82 | (10) |
|
|
92 | (3) |
|
|
95 | (1) |
|
5.6 Bibliographical Notes |
|
|
96 | (2) |
|
|
98 | (15) |
|
|
99 | (5) |
|
|
104 | (7) |
|
|
111 | (1) |
|
6.4 Bibliographical Notes |
|
|
112 | (1) |
|
PART III RECONSTRUCTION OF SMOOTH SUBMANIFOLDS |
|
|
113 | (48) |
|
7 Triangulation of Submanifolds |
|
|
115 | (22) |
|
7.1 Reach and e-nets on Submanifolds |
|
|
115 | (5) |
|
|
120 | (6) |
|
7.3 Triangulation of Submanifolds |
|
|
126 | (8) |
|
|
134 | (2) |
|
7.5 Bibliographical Notes |
|
|
136 | (1) |
|
8 Reconstruction of Submanifolds |
|
|
137 | (24) |
|
8.1 Homotopy Reconstruction Using alpha-shapes |
|
|
138 | (4) |
|
8.2 Tangential Delaunay Complex |
|
|
142 | (7) |
|
8.3 Submanifold Reconstruction |
|
|
149 | (8) |
|
|
157 | (1) |
|
8.5 Bibliographical Notes |
|
|
158 | (3) |
|
PART IV DISTANCE-BASED INFERENCE |
|
|
161 | (63) |
|
9 Stability of Distance Functions |
|
|
163 | (17) |
|
9.1 Distance Function and Hausdorff Distance |
|
|
164 | (1) |
|
9.2 Critical Points of Distance Functions |
|
|
165 | (2) |
|
9.3 Topology of the Offsets |
|
|
167 | (2) |
|
9.4 Stability of Critical Points |
|
|
169 | (3) |
|
9.5 The Critical Function of a Compact Set |
|
|
172 | (3) |
|
9.6 Sampling Conditions and μ-reach |
|
|
175 | (1) |
|
9.7 Offset Reconstruction |
|
|
176 | (1) |
|
|
177 | (2) |
|
9.9 Bibliographical Notes |
|
|
179 | (1) |
|
10 Distance to Probability Measures |
|
|
180 | (17) |
|
10.1 Extending the Sampling Theory for Compact Sets |
|
|
180 | (4) |
|
10.2 Measures and the Wasserstein Distance W2 |
|
|
184 | (3) |
|
10.3 Distance Function to a Probability Measure |
|
|
187 | (5) |
|
10.4 Applications to Geometric Inference |
|
|
192 | (3) |
|
|
195 | (1) |
|
10.6 Bibliographical Notes |
|
|
196 | (1) |
|
|
197 | (27) |
|
11.1 Simplicial Homology and Betti Numbers |
|
|
197 | (4) |
|
11.2 An Algorithm to Compute Betti Numbers |
|
|
201 | (2) |
|
11.3 Singular Homology and Topological Invariance |
|
|
203 | (1) |
|
11.4 Betti Numbers Inference |
|
|
204 | (4) |
|
|
208 | (14) |
|
|
222 | (1) |
|
11.7 Bibliographical Notes |
|
|
223 | (1) |
Bibliography |
|
224 | (7) |
Index |
|
231 | |