Atjaunināt sīkdatņu piekrišanu

E-grāmata: Geometry of Minkowski Spacetime: An Introduction to the Mathematics of the Special Theory of Relativity

3.92/5 (13 ratings by Goodreads)
  • Formāts: PDF+DRM
  • Sērija : Applied Mathematical Sciences 92
  • Izdošanas datums: 02-Feb-2012
  • Izdevniecība: Springer-Verlag New York Inc.
  • Valoda: eng
  • ISBN-13: 9781441978387
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 65,42 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Applied Mathematical Sciences 92
  • Izdošanas datums: 02-Feb-2012
  • Izdevniecība: Springer-Verlag New York Inc.
  • Valoda: eng
  • ISBN-13: 9781441978387
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book offers a presentation of the special theory of relativity that is mathematically rigorous and yet spells out in considerable detail the physical significance of the mathematics.  It treats, in addition to the usual menu of topics one is accustomed to finding in introductions to special relativity, a wide variety of results of more contemporary origin. These include Zeemans characterization of the causal automorphisms of Minkowski spacetime, the Penrose theorem on the apparent shape of a relativistically moving sphere, a detailed introduction to the theory of spinors, a Petrov-type classification of electromagnetic fields in both tensor and spinor form, a topology for Minkowski spacetime whose homeomorphism group is essentially the Lorentz group, and a careful discussion of Diracs famous Scissors Problem and its relation to the notion of a two-valued representation of the Lorentz group.  This second edition includes a new chapter on the de Sitter universe which is intended to serve two purposes. The first is to provide a gentle prologue to the steps one must take to move beyond special relativity and adapt  to the presence of gravitational fields that cannot be considered  negligible. The second is to understand some of the basic features of  a model of the empty universe that differs markedly from Minkowski spacetime, but may be recommended by recent astronomical observations suggesting that the expansion of our own universe is accelerating rather than slowing down. The treatment presumes only a knowledge of linear algebra in the first three chapters, a bit of real analysis in the fourth and, in two appendices, some elementary point-set topology.

 

The first edition of the book received the 1993 CHOICE award for Outstanding Academic Title.

 

Reviews of first edition:

 

  a valuable contribution to the pedagogical literature which will be enjoyed by all who delight in precise mathematics andphysics. (American Mathematical Society, 1993)

 

 Where many physics texts explain physical phenomena by means of mathematical models, here a rigorous and detailed mathematical development is accompanied by precise physical interpretations. (CHOICE, 1993)

  his talent in choosing the most significant results and ordering them within the book cant be denied. The reading of the book is, really, a pleasure. (Dutch Mathematical Society, 1993)

 

Recenzijas

From the reviews of the second edition:

This text brings sophisticated mathematical structures and tools to play, yet much of the work would be accessible to a motivated undergraduate. The author lays out his goal very clearly: It is the intention of this monograph to provide an introduction to the special theory of relativity that is mathematically rigorous and yet spells out in considerable detail the physical significance of the mathematics. He then proceeds to accomplish this admirably. the underlying mathematics is wonderful, worth studying for its own sake. (William J. Satzer, The Mathematical Association of America, May, 2012)

Preface vii
Acknowledgments xiii
Introduction 1(6)
1 Geometrical Structure of M
7(86)
1.1 Preliminaries
7(2)
1.2 Minkowski Spacetime
9(6)
1.3 The Lorentz Group
15(27)
1.4 Timelike Vectors and Curves
42(13)
1.5 Spacelike Vectors
55(3)
1.6 Causality Relations
58(10)
1.7 Spin Transformations and the Lorentz Group
68(13)
1.8 Particles and Interaction
81(12)
2 Skew-Symmetric Linear Transformations and Electromagnetic Fields
93(42)
2.1 Motivation via the Lorentz Law
93(2)
2.2 Elementary Properties
95(4)
2.3 Invariant Subspaces
99(6)
2.4 Canonical Forms
105(4)
2.5 The Energy-Momentum Transformation
109(4)
2.6 Motion in Constant Fields
113(4)
2.7 Variable Electromagnetic Fields
117(18)
3 The Theory of Spinors
135(64)
3.1 Representations of the Lorentz Group
135(18)
3.2 Spin Space
153(7)
3.3 Spinor Algebra
160(9)
3.4 Spinors and World Vectors
169(10)
3.5 Bivectors and Null Flags
179(7)
3.6 The Electromagnetic Field (Revisited)
186(13)
4 Prologue and Epilogue: The de Sitter Universe
199(80)
4.1 Introduction
199(1)
4.2 Gravitation
199(3)
4.3 Mathematical Machinery
202(47)
4.4 The de Sitter Universe dS
249(6)
4.5 Infinity in Minkowski and de Sitter Spacetimes
255(24)
Appendix A Topologies For M
279(14)
A.1 The Euclidean Topology
279(1)
A.2 E-Continuous Timelike Curves
280(4)
A.3 The Path Topology
284(9)
Appendix B Spinorial Objects
293(14)
B.1 Introduction
293(1)
B.2 The Spinning Electron and Dirac's Demonstration
294(2)
B.3 Homotopy in the Rotation and Lorentz Groups
296(11)
References 307(4)
Symbols 311(6)
Index 317
Gregory L. Naber is a Professor in the Department of Mathematics at Drexel University in Philadelphia, PA.