Foreword |
|
v | |
|
1 Loop Groups, Clusters, Dimers and Integrable Systems |
|
|
1 | (66) |
|
|
|
|
1 | (6) |
|
1.1.1 Integrable Systems on Poisson--Lie Groups |
|
|
2 | (1) |
|
1.1.2 Goncharov--Kenyon Integrable Systems |
|
|
3 | (2) |
|
1.1.3 Relations Between the Two Approaches |
|
|
5 | (2) |
|
1.2 Integrable Systems and r-Matrices |
|
|
7 | (2) |
|
1.3 Cluster Parametrisation of Double Bruhat Cells: Simple Groups |
|
|
9 | (5) |
|
1.3.1 Cartan--Weyl Generators of a Simple Group |
|
|
9 | (1) |
|
1.3.2 Construction of the Cluster Seeds |
|
|
10 | (1) |
|
1.3.3 Generators and Thurston Diagrams for the Group PGL(N) |
|
|
11 | (1) |
|
1.3.4 Example: Poisson submanifolds of PGL(3) |
|
|
12 | (2) |
|
1.4 Cluster Parameterisation of Double Bruhat Cells: Loop Groups |
|
|
14 | (6) |
|
1.4.1 The Coextended Affine Weyl Group, Wiring, and Thurston Diagrams |
|
|
14 | (2) |
|
1.4.2 Realisations of the Coextended Loop Group |
|
|
16 | (2) |
|
1.4.3 Integrable Systems on Double Bruhat Cells |
|
|
18 | (2) |
|
|
20 | (11) |
|
1.5.1 Recollection About Dimers |
|
|
20 | (2) |
|
1.5.2 Matrices and Dimers on a Disk |
|
|
22 | (1) |
|
1.5.3 Dimer Partition Functions with Signs |
|
|
23 | (1) |
|
1.5.4 PGL(N) and Dimers on a Cylinder |
|
|
24 | (1) |
|
1.5.5 Dimers and the Discrete Dirac Operator |
|
|
25 | (2) |
|
1.5.6 Spectral Submanifold and Face Partition Function |
|
|
27 | (3) |
|
1.5.7 Dual Surface, Double Partition Function, and Poisson Bracket |
|
|
30 | (1) |
|
1.6 Dimers and Integrable Systems for the Loop Groups |
|
|
31 | (2) |
|
1.7 Mutations and Discrete Flows |
|
|
33 | (4) |
|
1.7.1 Equivalence of Bipartite Graphs |
|
|
33 | (1) |
|
|
34 | (1) |
|
1.7.3 General Discrete Flows |
|
|
35 | (2) |
|
|
37 | (15) |
|
|
37 | (2) |
|
1.8.2 The Simplest Relativistic Toda Chain |
|
|
39 | (2) |
|
1.8.3 Degeneration to non-Affine Toda System |
|
|
41 | (2) |
|
1.8.4 Relativistic Toda Chain of Rank Two |
|
|
43 | (4) |
|
1.8.5 Parallelograms of Arbitrary Size and the Pentagram Map |
|
|
47 | (5) |
|
1.9 Appendix A: Cluster Varieties of Type Χ |
|
|
52 | (1) |
|
1.10 Appendix B: Relations among the Generators of a Simply Laced Lie Group |
|
|
53 | (1) |
|
1.11 Appendix C: Exchange Graphs and Decompositions of u ε W × W |
|
|
53 | (2) |
|
1.12 Appendix D: Thurston Diagrams |
|
|
55 | (5) |
|
1.13 Appendix E: Proofs of the Properties of the Minors Generating Functions |
|
|
60 | (1) |
|
1.14 Appendix F: Schwartz Coordinates and the Pentagram Map |
|
|
61 | (6) |
|
|
65 | (2) |
|
2 Lectures on Klein Surfaces and Their Fundamental Group |
|
|
67 | (42) |
|
|
2.1 Klein Surfaces and Real Algebraic Curves |
|
|
68 | (12) |
|
2.1.1 Algebraic Curves and Two-Dimensional Manifolds |
|
|
68 | (3) |
|
2.1.2 Topological Types of Real Curves |
|
|
71 | (4) |
|
2.1.3 Dianalytic Structures on Surfaces |
|
|
75 | (5) |
|
2.2 The Fundamental Group of a Real Algebraic Curve |
|
|
80 | (21) |
|
2.2.1 A Short Reminder on the Fundamental Group of a Riemann Surface |
|
|
80 | (6) |
|
2.2.2 The Fundamental Group of a Klein Surface |
|
|
86 | (12) |
|
2.2.3 Galois Theory of Real Covering Spaces |
|
|
98 | (3) |
|
2.3 Representations of the Fundamental Group of a Klein Surface |
|
|
101 | (8) |
|
2.3.1 Linear Representations of Fundamental Groups of Real Curves |
|
|
101 | (2) |
|
2.3.2 Real Structure of the Usual Representation Variety |
|
|
103 | (4) |
|
|
107 | (2) |
|
3 Five Lectures on Topological Field Theory |
|
|
109 | (56) |
|
|
3.1 Introduction and Examples |
|
|
109 | (9) |
|
|
109 | (1) |
|
3.1.2 Example: Finite Group Gauge Theory |
|
|
110 | (1) |
|
3.1.3 Baby Classification, D = 1 |
|
|
111 | (1) |
|
3.1.4 D = 2 and Frobenius Algebras |
|
|
112 | (1) |
|
3.1.5 Finite Group Gauge Theory in 2D |
|
|
113 | (1) |
|
3.1.6 Finite Higher-Groupoid Theories |
|
|
113 | (1) |
|
3.1.7 Yang-Mills Theory in 2D |
|
|
114 | (1) |
|
3.1.8 Variant of TQFT: Cohomological Field Theories |
|
|
115 | (3) |
|
3.2 Two-Dimensional Gauge Theory |
|
|
118 | (9) |
|
3.2.1 Interpretation in K-Theory |
|
|
119 | (1) |
|
3.2.2 Integration from the Index |
|
|
120 | (1) |
|
3.2.3 Index Formulas on φ(Σ; G) |
|
|
121 | (1) |
|
|
122 | (1) |
|
3.2.5 Twisted K-Theory, a Crash Course |
|
|
122 | (2) |
|
|
124 | (2) |
|
3.2.7 Generalizations: Higgs Bundles as an Example |
|
|
126 | (1) |
|
3.3 Extended TQFT and Higher Categories |
|
|
127 | (10) |
|
|
128 | (1) |
|
3.3.2 Strict Versus Weak Categories |
|
|
129 | (1) |
|
3.3.3 Finite Group Gauge Theory in 2D |
|
|
129 | (1) |
|
3.3.4 The Correspondence 2-Category |
|
|
130 | (2) |
|
3.3.5 Inadequacy of Strict Categories |
|
|
132 | (1) |
|
3.3.6 The Quadratic Map π2 → π3 |
|
|
133 | (1) |
|
3.3.7 A Braided Tensor Category from X |
|
|
134 | (1) |
|
|
135 | (1) |
|
3.3.9 Finite Homotopy Types |
|
|
136 | (1) |
|
3.4 The Cobordism Hypothesis in Dimensions 1 and 2 |
|
|
137 | (14) |
|
3.4.1 Duals and 1D framed TQFT's |
|
|
139 | (2) |
|
3.4.2 Cobordism Hypothesis in 1D |
|
|
141 | (1) |
|
3.4.3 O(1) Action on Dualizable Objects |
|
|
141 | (1) |
|
3.4.4 Cobordism Hypothesis in 2D |
|
|
142 | (1) |
|
|
143 | (1) |
|
3.4.6 Oriented and r-Spin Theories |
|
|
144 | (1) |
|
3.4.7 Adjunction in Pictures: Oriented Handles |
|
|
144 | (1) |
|
|
145 | (2) |
|
3.4.9 Adjunction: Algebraic Conditions |
|
|
147 | (2) |
|
3.4.10 Oriented TQFT's from Frobenius Algebras |
|
|
149 | (1) |
|
3.4.11 Finite Gauge Theory Revisited |
|
|
149 | (1) |
|
3.4.12 The Serre Functor on a Scheme |
|
|
150 | (1) |
|
3.4.13 Vector Spaces Associated to the Circle |
|
|
150 | (1) |
|
3.5 Cobordism Hypothesis in Higher Dimension |
|
|
151 | (14) |
|
3.5.1 Reduction to co-Dimension 2 |
|
|
152 | (1) |
|
|
153 | (4) |
|
3.5.3 Tensor and Module Categories |
|
|
157 | (1) |
|
3.5.4 Tensor Product of Categories |
|
|
157 | (1) |
|
|
158 | (1) |
|
3.5.6 Drinfeld Center and Hochschild Homology |
|
|
158 | (2) |
|
|
160 | (1) |
|
3.5.8 The Serre Automorphism Tv |
|
|
161 | (2) |
|
|
163 | (2) |
|
4 Higgs Bundles and Local Systems on Riemann Surfaces |
|
|
165 | |
|
|
|
165 | (3) |
|
4.2 The Dolbeault Moduli Space |
|
|
168 | (20) |
|
|
168 | (5) |
|
|
173 | (5) |
|
4.2.3 The Hitchin--Kobayashi Correspondence |
|
|
178 | (10) |
|
4.3 The Betti Moduli Space |
|
|
188 | (12) |
|
4.3.1 Representation Varieties |
|
|
188 | (1) |
|
4.3.2 Local Systems and Holomorphic Connections |
|
|
188 | (4) |
|
4.3.3 The Corlette--Donaldson Theorem |
|
|
192 | (5) |
|
4.3.4 Hyperkahler Reduction |
|
|
197 | (3) |
|
4.4 Differential Equations |
|
|
200 | |
|
|
200 | (2) |
|
4.4.2 Higher Order Equations |
|
|
202 | (3) |
|
|
205 | (8) |
|
4.4.4 The Eichler--Shimura Isomorphism |
|
|
213 | (2) |
|
|
215 | |