Atjaunināt sīkdatņu piekrišanu

Geometry, Rigidity, and Group Actions [Hardback]

Edited by , Edited by
  • Formāts: Hardback, 600 pages, height x width x depth: 24x16x4 mm, weight: 1021 g
  • Sērija : Chicago Lectures in Mathematics Series CLM
  • Izdošanas datums: 30-Apr-2011
  • Izdevniecība: University of Chicago Press
  • ISBN-10: 0226237885
  • ISBN-13: 9780226237886
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 101,53 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 600 pages, height x width x depth: 24x16x4 mm, weight: 1021 g
  • Sērija : Chicago Lectures in Mathematics Series CLM
  • Izdošanas datums: 30-Apr-2011
  • Izdevniecība: University of Chicago Press
  • ISBN-10: 0226237885
  • ISBN-13: 9780226237886
Citas grāmatas par šo tēmu:

The study of group actions is more than a hundred years old but remains to this day a vibrant and widely studied topic in a variety of mathematic fields. A central development in the last fifty years is the phenomenon of rigidity, whereby one can classify actions of certain groups, such as lattices in semi-simple Lie groups. This provides a way to classify all possible symmetries of important spaces and all spaces admitting given symmetries. Paradigmatic results can be found in the seminal work of George Mostow, Gergory Margulis, and Robert J. Zimmer, among others.


The papers in Geometry, Rigidity, and Group Actions explore the role of group actions and rigidity in several areas of mathematics, including ergodic theory, dynamics, geometry, topology, and the algebraic properties of representation varieties. In some cases, the dynamics of the possible group actions are the principal focus of inquiry. In other cases, the dynamics of group actions are a tool for proving theorems about algebra, geometry, or topology. This volume contains surveys of some of the main directions in the field, as well as research articles on topics of current interest.

Preface ix
PART 1 Group Actions on Manifolds
1 An Extension Criterion for Lattice Actions on the Circle
3(29)
Marc Burger
2 Meromorphic Almost Rigid Geometric Structures
32(27)
Sorin Dumitrescu
3 Harmonic Functions over Group Actions
59(13)
Renato Feres
Emily Ronshausen
4 Groups Acting on Manifolds: Around the Zimmer Program
72(86)
David Fisher
5 Can Lattices in SL (n, R) Act on the Circle?
158(50)
Dave Witte Morris
6 Some Remarks on Area-Preserving Actions of Lattices
208(21)
Pierre Py
7 Isometric Actions of Simple Groups and Transverse Structures: The Integrable Normal Case
229(33)
Raul Quiroga-Barranco
8 Some Remarks Inspired by the C0 Zimmer Program
262(23)
Shmuel Weinberger
PART 2 Analytic, Ergodic, and Measurable Group Theory
9 Calculus on Nilpotent Lie Groups
285(11)
Michael G. Cowling
10 A Survey of Measured Group Theory
296(79)
Alex Furman
11 On Relative Property (T)
375(21)
Alessandra Iozzi
12 Noncommutative Ergodic Theorems
396(23)
Anders Karlsson
Francois Ledrappier
13 Cocycle and Orbit Superrigidity for Lattices in SL (n, R) Acting on Homogeneous Spaces
419(36)
Sorin Popa
Stefaan Vaes
PART 3 Geometric Group Theory
14 Heights on SL2 and Free Subgroups
455(39)
Emmanuel Breuillard
15 Displacing Representations and Orbit Maps
494(21)
Thomas Delzant
Olivier Guichard
Francois Labourie
Shahar Mozes
16 Problems on Automorphism Groups of Nonpositively Curved Polyhedral Complexes and Their Lattices
515(46)
Benson Farb
Chris Hruska
Anne Thomas
17 The Geometry of Twisted Conjugacy Classes in Wreath Products
561(30)
Jennifer Taback
Peter Wong
PART 4 Group Actions on Representations Varieties
18 Ergodicity of Mapping Class Group Actions on SU(2)-Character Varieties
591(18)
William M. Goldman
Eugene Z. Xia
19 Dynamics of Aut (Fn) Actions on Group Presentations and Representations
609(36)
Alexander Lubotzky
List of Contributors 645
Benson Farb is professor of mathematics at the University of Chicago. He is the author of Problems on Mapping Class Groups and Related Topics and coauthor of Noncommutative Algebra. David Fisher is professor of mathematics at Indiana University.