Atjaunināt sīkdatņu piekrišanu

E-grāmata: The Geometry of Special Relativity

4.38/5 (13 ratings by Goodreads)
  • Formāts: 196 pages
  • Sērija : Textbooks in Mathematics
  • Izdošanas datums: 10-Jun-2021
  • Izdevniecība: CRC Press
  • ISBN-13: 9781351663205
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 62,60 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 196 pages
  • Sērija : Textbooks in Mathematics
  • Izdošanas datums: 10-Jun-2021
  • Izdevniecība: CRC Press
  • ISBN-13: 9781351663205
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This unique book presents a particularly beautiful way of looking at special relativity. The author encourages students to see beyond the formulas to the deeper structure.

The unification of space and time introduced by Einstein’s special theory of relativity is one of the cornerstones of the modern scientific description of the universe. Yet the unification is counterintuitive because we perceive time very differently from space. Even in relativity, time is not just another dimension, it is one with different properties

The book treats the geometry of hyperbolas as the key to understanding special relativity. The author simplifies the formulas and emphasizes their geometric content. Many important relations, including the famous relativistic addition formula for velocities, then follow directly from the appropriate (hyperbolic) trigonometric addition formulas.

Prior mastery of (ordinary) trigonometry is sufficient for most of the material presented, although occasional use is made of elementary differential calculus, and the chapter on electromagnetism assumes some more advanced knowledge.

Changes to the Second Edition

  • The treatment of Minkowski space and spacetime diagrams has been expanded.
  • Several new topics have been added, including a geometric derivation of Lorentz transformations, a discussion of three-dimensional spacetime diagrams, and a brief geometric description of "area" and how it can be used to measure time and distance.
  • Minor notational changes were made to avoid conflict with existing usage
    in the literature.

Table of Contents

Preface
1. Introduction.
2. The Physics of Special Relativity.
3. Circle Geometry.
4. Hyperbola Geometry.
5. The Geometry of Special Relativity.
6. Applications.
7. Problems III.
8. Paradoxes.
9. Relativistic Mechanics.
10. Problems II.
11. Relativistic Electromagnetism.
12. Problems III.
13. Beyond Special Relativity.
14. Three-Dimensional Spacetime Diagrams.
15. Minkowski Area via Light Boxes.
16. Hyperbolic Geometry.
17. Calculus.
Bibliography.

Author Biography

Tevian Dray is a Professor of Mathematics at Oregon State University. His research lies at the interface between mathematics and physics, involving differential geometry and general relativity, as well as nonassociative algebra and particle physics; he also studies student understanding of "middle-division" mathematics and physics content. Educated at MIT and Berkeley, he held postdoctoral positions in both mathematics and physics in several countries prior to coming to OSU in 1988. Professor Dray is a Fellow of the American Physical Society for his work in relativity, and an award-winning teacher.

1. Introduction. 1.1 Newtons Relativity. 1.2. Einsteins Relativity.
2.
The Physics of Special Relativity. 2.1. Observers and Measurement. 2.2. The
Postulates of Special Relativity. 2.3. Time Dilation and Length Contraction.
2.4. Lorentz Transformations. 2.5. Addition of Velocities. 2.6. The Interval.
3. Circle Geometry. 3.1. The Geometry of Trigonometry. 3.2. Distance. 3.3.
Circle Trigonometry. 3.4. Triangle Trigonometry. 3.5. Rotations. 3.6.
Projections. 3.7. Addition Formulas.
4. Hyperbola Geometry. 4.1. Hyperbolic
Trigonometry. 4.2 Distance. 4.3. Hyperbola Trigonometry. 4.4. Triangle
Trigonometry. 4.5. Rotations. 4.6. Projections. 4.7. Addition Formulas. 4.8.
Combining Circle and Hyperbola Trigonometry.
5. The Geometry of Special
Relativity. 5.1. The Surveyors. 5.2. Spacetime Diagrams. 5.3. Lorentz
Transformations. 5.4. Space and Time. 5.5. The Geometry of Lorentz
Transformations. 5.6. Dot Product.
6. Applications. 6.1. Drawing Spacetime
Diagrams. 6.2. Addition of Velocities. 6.3. Length Contraction. 6.4. Time
Dilation. 6.5. Doppler Shift.
7. Problems I. 7.1. Warmup. 7.2. Practice. 7.3.
The Getaway. 7.4. Angles Are Not Invariant. 7.5. Interstellar Travel. 7.6.
Observation. 7.7 Cosmic Rays. 7.8. Doppler Effect.
8. Paradoxes. 8.1. Special
Relativity Paradoxes. 8.2. The Pole and Barn Paradox. 8.3. The Twin Paradox.
8.4. Manhole Covers.
9. Relativistic Mechanics. 9.1. Proper Time. 9.2.
Velocity. 9.3. Conservation Laws. 9.4. Energy. 9.5. Useful Formulas. 9.6.
Higher Dimensions.
10. Problems II. 10.1. Mass Isnt Conserved. 10.2.
Identical Particles. 10.3. Pion Decay I. 10.4. Mass and Energy. 10.5. Pion
Decay II.
11. Relativistic Electromagnetism. 11.1. Magnetism from
Electricity. 11.2. Lorentz Transformations. 11.3. Vectors. 11.4. Tensors.
11.5. The Electromagnetic Field. 11.6. Maxwells Equations. 11.7. The
Unification of Special Relativity.
12. Problems III. 12.1. Vanishing Fields.
12.2. Parallel and Perpendicular Fields.
13. Beyond Special Relativity. 13.1.
Problems with Special Relativity. 13.2. Tidal Effects. 13.3. Differential
Geometry. 13.4. General Relativity. 13.5. Uniform Acceleration and Black
Holes.
14. Three-Dimensional Spacetime Diagrams. 14.1. Introduction. 14.2.
The Rising Manhole. 14.3. The Moving Spotlight. 14.4. The Lorentzian Inner
Product. 14.5. Transverse Directions.
15. Minkowski Area via Light Boxes.
15.1. Area in Special Relativity. 15.2. Measuring with Light Boxes.
16.
Hyperbolic Geometry. 16.1. Non-Euclidean Geometry. 16.2. The Hyperboloid.
16.3. The Poincaré Disk. 16.4. The Klein Disk. 16.5. The Pseudosphere.
17.
Calculus. 17.1. Circle Trigonometry. 17.2. Hyperbolic Trigonometry. 17.3.
Exponentials (and Logarithms). Bibliography. Index.
Tevian Dray is a Professor of Mathematics at Oregon State University. His research lies at the interface between mathematics and physics, involving differential geometry and general relativity, as well as nonassociative algebra and particle physics; he also studies student understanding of "middle-division" mathematics and physics content. Educated at MIT and Berkeley, he held postdoctoral positions in both mathematics and physics in several countries prior to coming to OSU in 1988. Professor Dray is a Fellow of the American Physical Society for his work in relativity, and an award-winning teacher.