Preface to the First Edition |
|
xvii | |
Preface to the Second Edition |
|
xix | |
How to Read this Book |
|
xxi | |
Notation and Conventions |
|
xxii | |
1 Quantum Physics |
|
1 | (66) |
|
|
1 | (8) |
|
1.1.1 Newtonian mechanics |
|
|
1 | (1) |
|
1.1.2 Lagrangian formalism |
|
|
2 | (3) |
|
1.1.3 Hamiltonian formalism |
|
|
5 | (4) |
|
1.2 Canonical quantization |
|
|
9 | (10) |
|
1.2.1 Hilbert space, bras and kets |
|
|
9 | (1) |
|
1.2.2 Axioms of canonical quantization |
|
|
10 | (3) |
|
1.2.3 Heisenberg equation, Heisenberg picture and Schrodinger picture |
|
|
13 | (1) |
|
|
13 | (4) |
|
1.2.5 Harmonic oscillator |
|
|
17 | (2) |
|
1.3 Path integral quantization of a Bose particle |
|
|
19 | (12) |
|
1.3.1 Path integral quantization |
|
|
19 | (7) |
|
1.3.2 Imaginary time and partition function |
|
|
26 | (2) |
|
1.3.3 Time-ordered product and generating functional |
|
|
28 | (3) |
|
|
31 | (7) |
|
1.4.1 Transition amplitude |
|
|
31 | (4) |
|
|
35 | (3) |
|
1.5 Path integral quantization of a Fermi particle |
|
|
38 | (13) |
|
1.5.1 Fermionic harmonic oscillator |
|
|
39 | (1) |
|
1.5.2 Calculus of Grassmann numbers |
|
|
40 | (1) |
|
|
41 | (1) |
|
|
42 | (1) |
|
|
43 | (1) |
|
|
44 | (1) |
|
1.5.7 Functional derivative |
|
|
45 | (1) |
|
1.5.8 Complex conjugation |
|
|
45 | (1) |
|
1.5.9 Coherent states and completeness relation |
|
|
46 | (1) |
|
1.5.10 Partition function of a fermionic oscillator |
|
|
47 | (4) |
|
1.6 Quantization of a scalar field |
|
|
51 | (4) |
|
|
51 | (3) |
|
1.6.2 Interacting scalar field |
|
|
54 | (1) |
|
1.7 Quantization of a Dirac field |
|
|
55 | (1) |
|
|
56 | (4) |
|
1.8.1 Abelian gauge theories |
|
|
56 | (2) |
|
1.8.2 Non-Abelian gauge theories |
|
|
58 | (2) |
|
|
60 | (1) |
|
|
60 | (3) |
|
|
61 | (1) |
|
1.9.2 The Wu-Yang monopole |
|
|
62 | (1) |
|
1.9.3 Charge quantization |
|
|
62 | (1) |
|
|
63 | (3) |
|
|
63 | (1) |
|
1.10.2 The (anti-)self-dual solution |
|
|
64 | (2) |
|
|
66 | (1) |
2 Mathematical Preliminaries |
|
67 | (26) |
|
|
67 | (8) |
|
|
67 | (3) |
|
2.1.2 Equivalence relation and equivalence class |
|
|
70 | (5) |
|
|
75 | (6) |
|
2.2.1 Vectors and vector spaces |
|
|
75 | (1) |
|
2.2.2 Linear maps, images and kernels |
|
|
76 | (1) |
|
|
77 | (1) |
|
2.2.4 Inner product and adjoint |
|
|
78 | (2) |
|
|
80 | (1) |
|
|
81 | (4) |
|
|
81 | (1) |
|
|
82 | (1) |
|
2.3.3 Neighbourhoods and Hausdorff spaces |
|
|
82 | (1) |
|
|
83 | (1) |
|
|
83 | (2) |
|
|
85 | (1) |
|
2.4 Homeomorphisms and topological invariants |
|
|
85 | (6) |
|
|
85 | (1) |
|
2.4.2 Topological invariants |
|
|
86 | (2) |
|
|
88 | (1) |
|
2.4.4 Euler characteristic: an example |
|
|
88 | (3) |
|
|
91 | (2) |
3 Homology Groups |
|
93 | (28) |
|
|
93 | (5) |
|
3.1.1 Elementary group theory |
|
|
93 | (3) |
|
3.1.2 Finitely generated Abelian groups and free Abelian groups |
|
|
96 | (1) |
|
|
96 | (2) |
|
3.2 Simplexes and simplicial complexes |
|
|
98 | (2) |
|
|
98 | (1) |
|
3.2.2 Simplicial complexes and polyhedra |
|
|
99 | (1) |
|
3.3 Homology groups of simplicial complexes |
|
|
100 | (17) |
|
|
100 | (2) |
|
3.3.2 Chain group, cycle group and boundary group |
|
|
102 | (4) |
|
|
106 | (4) |
|
3.3.4 Computation of H0(K) |
|
|
110 | (1) |
|
3.3.5 More homology computations |
|
|
111 | (6) |
|
3.4 General properties of homology groups |
|
|
117 | (3) |
|
3.4.1 Connectedness and homology groups |
|
|
117 | (1) |
|
3.4.2 Structure of homology groups |
|
|
118 | (1) |
|
3.4.3 Betti numbers and the Euler-Poincare theorem |
|
|
118 | (2) |
|
|
120 | (1) |
4 Homotopy Groups |
|
121 | (48) |
|
|
121 | (6) |
|
|
121 | (1) |
|
|
122 | (1) |
|
|
123 | (2) |
|
|
125 | (2) |
|
4.2 General properties of fundamental groups |
|
|
127 | (4) |
|
4.2.1 Arcwise connectedness and fundamental groups |
|
|
127 | (1) |
|
4.2.2 Homotopic invariance of fundamental groups |
|
|
128 | (3) |
|
4.3 Examples of fundamental groups |
|
|
131 | (3) |
|
4.3.1 Fundamental group of torus |
|
|
133 | (1) |
|
4.4 Fundamental groups of polyhedra |
|
|
134 | (11) |
|
4.4.1 Free groups and relations |
|
|
134 | (2) |
|
4.4.2 Calculating fundamental groups of polyhedra |
|
|
136 | (8) |
|
4.4.3 Relations between H1(K) and π1(|K|) |
|
|
144 | (1) |
|
4.5 Higher homotopy groups |
|
|
145 | (3) |
|
|
146 | (2) |
|
4.6 General properties of higher homotopy groups |
|
|
148 | (2) |
|
4.6.1 Abelian nature of higher homotopy groups |
|
|
148 | (1) |
|
4.6.2 Arcwise connectedness and higher homotopy groups |
|
|
148 | (1) |
|
4.6.3 Homotopy invariance of higher homotopy groups |
|
|
148 | (1) |
|
4.6.4 Higher homotopy groups of a product space |
|
|
148 | (1) |
|
4.6.5 Universal covering spaces and higher homotopy groups |
|
|
148 | (2) |
|
4.7 Examples of higher homotopy groups |
|
|
150 | (3) |
|
4.8 Orders in condensed matter systems |
|
|
153 | (6) |
|
|
153 | (1) |
|
4.8.2 Superfluid 4He and superconductors |
|
|
154 | (3) |
|
4.8.3 General consideration |
|
|
157 | (2) |
|
4.9 Defects in nematic liquid crystals |
|
|
159 | (4) |
|
4.9.1 Order parameter of nematic liquid crystals |
|
|
159 | (1) |
|
4.9.2 Line defects in nematic liquid crystals |
|
|
160 | (1) |
|
4.9.3 Point defects in nematic liquid crystals |
|
|
161 | (1) |
|
4.9.4 Higher dimensional texture |
|
|
162 | (1) |
|
4.10 Textures in superfluid 3He-A |
|
|
163 | (4) |
|
|
163 | (2) |
|
4.10.2 Line defects and non-singular vortices in 3He-A |
|
|
165 | (1) |
|
4.10.3 Shankar monopole in 3He-A |
|
|
166 | (1) |
|
|
167 | (2) |
5 Manifolds |
|
169 | (57) |
|
|
169 | (9) |
|
5.1.1 Heuristic introduction |
|
|
169 | (2) |
|
|
171 | (2) |
|
|
173 | (5) |
|
5.2 The calculus on manifolds |
|
|
178 | (10) |
|
5.2.1 Differentiable maps |
|
|
179 | (2) |
|
|
181 | (3) |
|
|
184 | (1) |
|
|
185 | (1) |
|
|
185 | (1) |
|
|
186 | (2) |
|
|
188 | (1) |
|
5.3 Flows and Lie derivatives |
|
|
188 | (8) |
|
5.3.1 One-parameter group of transformations |
|
|
190 | (1) |
|
|
191 | (5) |
|
|
196 | (8) |
|
|
196 | (2) |
|
5.4.2 Exterior derivatives |
|
|
198 | (3) |
|
5.4.3 Interior product and Lie derivative of forms |
|
|
201 | (3) |
|
5.5 Integration of differential forms |
|
|
204 | (3) |
|
|
204 | (1) |
|
5.5.2 Integration of forms |
|
|
205 | (2) |
|
5.6 Lie groups and Lie algebras |
|
|
207 | (9) |
|
|
207 | (2) |
|
|
209 | (3) |
|
5.6.3 The one-parameter subgroup |
|
|
212 | (3) |
|
5.6.4 Frames and structure equation |
|
|
215 | (1) |
|
5.7 The action of Lie groups on manifolds |
|
|
216 | (8) |
|
|
216 | (3) |
|
5.7.2 Orbits and isotropy groups |
|
|
219 | (4) |
|
5.7.3 Induced vector fields |
|
|
223 | (1) |
|
5.7.4 The adjoint representation |
|
|
224 | (1) |
|
|
224 | (2) |
6 de Rham Cohomology Groups |
|
226 | (18) |
|
|
226 | (4) |
|
6.1.1 Preliminary consideration |
|
|
226 | (2) |
|
|
228 | (2) |
|
6.2 de Rham cohomology groups |
|
|
230 | (5) |
|
|
230 | (3) |
|
6.2.2 Duality of Hr(M) and Hr(M); de Rham's theorem |
|
|
233 | (2) |
|
|
235 | (2) |
|
6.4 Structure of de Rham cohomology groups |
|
|
237 | (7) |
|
|
237 | (1) |
|
|
238 | (1) |
|
6.4.3 The Kunneth formula |
|
|
238 | (2) |
|
6.4.4 Pullback of de Rham cohomology groups |
|
|
240 | (1) |
|
|
240 | (4) |
7 Riemannian Geometry |
|
244 | (64) |
|
7.1 Riemannian manifolds and pseudo-Riemannian manifolds |
|
|
244 | (3) |
|
|
244 | (2) |
|
|
246 | (1) |
|
7.2 Parallel transport, connection and covariant derivative |
|
|
247 | (7) |
|
7.2.1 Heuristic introduction |
|
|
247 | (2) |
|
|
249 | (1) |
|
7.2.3 Parallel transport and geodesics |
|
|
250 | (1) |
|
7.2.4 The covariant derivative of tensor fields |
|
|
251 | (1) |
|
7.2.5 The transformation properties of connection coefficients |
|
|
252 | (1) |
|
7.2.6 The metric connection |
|
|
253 | (1) |
|
7.3 Curvature and torsion |
|
|
254 | (7) |
|
|
254 | (2) |
|
7.3.2 Geometrical meaning of the Riemann tensor and the torsion tensor |
|
|
256 | (4) |
|
7.3.3 The Ricci tensor and the scalar curvature |
|
|
260 | (1) |
|
7.4 Levi-Civita connections |
|
|
261 | (10) |
|
7.4.1 The fundamental theorem |
|
|
261 | (1) |
|
7.4.2 The Levi-Civita connection in the classical geometry of surfaces |
|
|
262 | (1) |
|
|
263 | (3) |
|
7.4.4 The normal coordinate system |
|
|
266 | (2) |
|
7.4.5 Riemann curvature tensor with Levi-Civita connection |
|
|
268 | (3) |
|
|
271 | (2) |
|
7.6 Isometries and conformal transformations |
|
|
273 | (6) |
|
|
273 | (1) |
|
7.6.2 Conformal transformations |
|
|
274 | (5) |
|
7.7 Killing vector fields and conformal Killing vector fields |
|
|
279 | (4) |
|
7.7.1 Killing vector fields |
|
|
279 | (3) |
|
7.7.2 Conformal Killing vector fields |
|
|
282 | (1) |
|
|
283 | (6) |
|
|
283 | (1) |
|
7.8.2 Cartan's structure equations |
|
|
284 | (1) |
|
|
285 | (2) |
|
7.8.4 The Levi-Civita connection in a non-coordinate basis |
|
|
287 | (2) |
|
7.9 Differential forms and Hodge theory |
|
|
289 | (8) |
|
7.9.1 Invariant volume elements |
|
|
289 | (1) |
|
7.9.2 Duality transformations (Hodge star) |
|
|
290 | (1) |
|
7.9.3 Inner products of r-forms |
|
|
291 | (2) |
|
7.9.4 Adjoints of exterior derivatives |
|
|
293 | (1) |
|
7.9.5 The Laplacian, harmonic forms and the Hodge decomposition theorem |
|
|
294 | (2) |
|
7.9.6 Harmonic forms and de Rham cohomology groups |
|
|
296 | (1) |
|
7.10 Aspects of general relativity |
|
|
297 | (5) |
|
7.10.1 Introduction to general relativity |
|
|
297 | (1) |
|
7.10.2 Einstein-Hilbert action |
|
|
298 | (2) |
|
7.10.3 Spinors in curved spacetime |
|
|
300 | (2) |
|
7.11 Bosonic string theory |
|
|
302 | (5) |
|
|
303 | (2) |
|
7.11.2 Symmetries of the Polyakov strings |
|
|
305 | (2) |
|
|
307 | (1) |
8 Complex Manifolds |
|
308 | (40) |
|
|
308 | (7) |
|
|
308 | (1) |
|
|
309 | (6) |
|
8.2 Calculus on complex manifolds |
|
|
315 | (5) |
|
|
315 | (1) |
|
|
316 | (1) |
|
8.2.3 Almost complex structure |
|
|
317 | (3) |
|
8.3 Complex differential forms |
|
|
320 | (4) |
|
8.3.1 Complexification of real differential forms |
|
|
320 | (1) |
|
8.3.2 Differential forms on complex manifolds |
|
|
321 | (1) |
|
8.3.3 Dolbeault operators |
|
|
322 | (2) |
|
8.4 Hermitian manifolds and Hermitian differential geometry |
|
|
324 | (6) |
|
8.4.1 The Hermitian metric |
|
|
325 | (1) |
|
|
326 | (1) |
|
8.4.3 Covariant derivatives |
|
|
327 | (2) |
|
8.4.4 Torsion and curvature |
|
|
329 | (1) |
|
8.5 Kahler manifolds and Kahler differential geometry |
|
|
330 | (6) |
|
|
330 | (4) |
|
|
334 | (1) |
|
8.5.3 The holonomy group of Kahler manifolds |
|
|
335 | (1) |
|
8.6 Harmonic forms and partial derivative-cohomology groups |
|
|
336 | (5) |
|
8.6.1 The adjoint operators partial derivative+ and partial derivative-+ |
|
|
337 | (1) |
|
8.6.2 Laplacians and the Hodge theorem |
|
|
338 | (1) |
|
8.6.3 Laplacians on a Kahler manifold |
|
|
339 | (1) |
|
8.6.4 The Hodge numbers of Kahler manifolds |
|
|
339 | (2) |
|
8.7 Almost complex manifolds |
|
|
341 | (3) |
|
|
342 | (2) |
|
|
344 | (4) |
|
8.8.1 One-dimensional examples |
|
|
344 | (2) |
|
8.8.2 Three-dimensional examples |
|
|
346 | (2) |
9 Fibre Bundles |
|
348 | (26) |
|
|
348 | (2) |
|
|
350 | (7) |
|
|
350 | (3) |
|
9.2.2 Reconstruction of fibre bundles |
|
|
353 | (1) |
|
|
354 | (1) |
|
|
355 | (1) |
|
|
355 | (2) |
|
|
357 | (1) |
|
|
357 | (6) |
|
9.3.1 Definitions and examples |
|
|
357 | (2) |
|
|
359 | (1) |
|
9.3.3 Cotangent bundles and dual bundles |
|
|
360 | (1) |
|
9.3.4 Sections of vector bundles |
|
|
361 | (1) |
|
9.3.5 The product bundle and Whitney sum bundle |
|
|
361 | (2) |
|
9.3.6 Tensor product bundles |
|
|
363 | (1) |
|
|
363 | (9) |
|
|
363 | (7) |
|
|
370 | (2) |
|
9.4.3 Triviality of bundles |
|
|
372 | (1) |
|
|
372 | (2) |
10 Connections on Fibre Bundles |
|
374 | (45) |
|
10.1 Connections on principal bundles |
|
|
374 | (10) |
|
|
375 | (1) |
|
10.1.2 The connection one-form |
|
|
376 | (1) |
|
10.1.3 The local connection form and gauge potential |
|
|
377 | (4) |
|
10.1.4 Horizontal lift and parallel transport |
|
|
381 | (3) |
|
|
384 | (1) |
|
|
384 | (1) |
|
|
385 | (6) |
|
10.3.1 Covariant derivatives in principal bundles |
|
|
385 | (1) |
|
|
386 | (2) |
|
10.3.3 Geometrical meaning of the curvature and the Ambrose-Singer theorem |
|
|
388 | (1) |
|
10.3.4 Local form of the curvature |
|
|
389 | (1) |
|
10.3.5 The Bianchi identity |
|
|
390 | (1) |
|
10.4 The covariant derivative on associated vector bundles |
|
|
391 | (8) |
|
10.4.1 The covariant derivative on associated bundles |
|
|
391 | (2) |
|
10.4.2 A local expression for the covariant derivative |
|
|
393 | (3) |
|
10.4.3 Curvature rederived |
|
|
396 | (1) |
|
10.4.4 A connection which preserves the inner product |
|
|
396 | (1) |
|
10.4.5 Holomorphic vector bundles and Hermitian inner products |
|
|
397 | (2) |
|
|
399 | (10) |
|
|
399 | (1) |
|
10.5.2 The Dirac magnetic monopole |
|
|
400 | (2) |
|
10.5.3 The Aharonov-Bohm effect |
|
|
402 | (2) |
|
|
404 | (1) |
|
|
405 | (4) |
|
|
409 | (9) |
|
10.6.1 Derivation of Berry's phase |
|
|
410 | (1) |
|
10.6.2 Berry's phase, Berry's connection and Berry's curvature |
|
|
411 | (7) |
|
|
418 | (1) |
11 Characteristic Classes |
|
419 | (34) |
|
11.1 Invariant polynomials and the Chern-Weil homomorphism |
|
|
419 | (7) |
|
11.1.1 Invariant polynomials |
|
|
420 | (6) |
|
|
426 | (5) |
|
|
426 | (2) |
|
11.2.2 Properties of Chern classes |
|
|
428 | (1) |
|
11.2.3 Splitting principle |
|
|
429 | (1) |
|
11.2.4 Universal bundles and classifying spaces |
|
|
430 | (1) |
|
|
431 | (5) |
|
|
431 | (3) |
|
11.3.2 Properties of the Chern characters |
|
|
434 | (1) |
|
|
435 | (1) |
|
11.4 Pontrjagin and Euler classes |
|
|
436 | (7) |
|
11.4.1 Pontrjagin classes |
|
|
436 | (3) |
|
|
439 | (3) |
|
11.4.3 Hirzebruch L-polynomial and A-genus |
|
|
442 | (1) |
|
|
443 | (5) |
|
|
443 | (1) |
|
11.5.2 The Chern-Simons form of the Chern character |
|
|
444 | (1) |
|
11.5.3 Cartan's homotopy operator and applications |
|
|
445 | (3) |
|
11.6 Stiefel-Whitney classes |
|
|
448 | (5) |
|
|
449 | (1) |
|
11.6.2 Cech cohomology groups |
|
|
449 | (1) |
|
11.6.3 Stiefel-Whitney classes |
|
|
450 | (3) |
12 Index Theorems |
|
453 | (48) |
|
12.1 Elliptic operators and Fredholm operators |
|
|
453 | (6) |
|
12.1.1 Elliptic operators |
|
|
454 | (2) |
|
12.1.2 Fredholm operators |
|
|
456 | (1) |
|
12.1.3 Elliptic complexes |
|
|
457 | (2) |
|
12.2 The Atiyah-Singer index theorem |
|
|
459 | (1) |
|
12.2.1 Statement of the theorem |
|
|
459 | (1) |
|
|
460 | (2) |
|
12.4 The Dolbeault complex |
|
|
462 | (2) |
|
12.4.1 The twisted Dolbeault complex and the Hirzebruch-Riemann-Roch theorem |
|
|
463 | (1) |
|
12.5 The signature complex |
|
|
464 | (3) |
|
12.5.1 The Hirzebruch signature |
|
|
464 | (1) |
|
12.5.2 The signature complex and the Hirzebruch signature theorem |
|
|
465 | (2) |
|
|
467 | (5) |
|
|
468 | (3) |
|
12.6.2 Twisted spin complexes |
|
|
471 | (1) |
|
12.7 The heat kernel and generalized ζ-functions |
|
|
472 | (5) |
|
12.7.1 The heat kernel and index theorem |
|
|
472 | (3) |
|
12.7.2 Spectral ζ-functions |
|
|
475 | (2) |
|
12.8 The Atiyah-Patodi-Singer index theorem |
|
|
477 | (4) |
|
12.8.1 η-invariant and spectral flow |
|
|
477 | (1) |
|
12.8.2 The Atiyah-Patodi-Singer (APS) index theorem |
|
|
478 | (3) |
|
12.9 Supersymmetric quantum mechanics |
|
|
481 | (6) |
|
12.9.1 Clifford algebra and fermions |
|
|
481 | (1) |
|
12.9.2 Supersymmetric quantum mechanics in flat space |
|
|
482 | (3) |
|
12.9.3 Supersymmetric quantum mechanics in a general manifold |
|
|
485 | (2) |
|
12.10 Supersymmetric proof of index theorem |
|
|
487 | (13) |
|
|
487 | (3) |
|
12.10.2 Path integral and index theorem |
|
|
490 | (10) |
|
|
500 | (1) |
13 Anomalies in Gauge Field Theories |
|
501 | (27) |
|
|
501 | (2) |
|
|
503 | (5) |
|
|
503 | (5) |
|
13.3 Non-Abelian anomalies |
|
|
508 | (4) |
|
13.4 The Wess-Zumino consistency conditions |
|
|
512 | (6) |
|
13.4.1 The Becchi-Rouet-Stora operator and the Faddeev-Popov ghost |
|
|
512 | (1) |
|
13.4.2 The BRS operator, FP ghost and moduli space |
|
|
513 | (2) |
|
13.4.3 The Wess-Zumino conditions |
|
|
515 | (1) |
|
13.4.4 Descent equations and solutions of WZ conditions |
|
|
515 | (3) |
|
13.5 Abelian anomalies versus non-Abelian anomalies |
|
|
518 | (5) |
|
13.5.1 m dimensions versus m + 2 dimensions |
|
|
520 | (3) |
|
13.6 The parity anomaly in odd-dimensional spaces |
|
|
523 | (5) |
|
13.6.1 The parity anomaly |
|
|
524 | (1) |
|
13.6.2 The dimensional ladder: 4-3-2 |
|
|
525 | (3) |
14 Bosonic String Theory |
|
528 | (32) |
|
14.1 Differential geometry on Riemann surfaces |
|
|
528 | (7) |
|
14.1.1 Metric and complex structure |
|
|
528 | (1) |
|
14.1.2 Vectors, forms and tensors |
|
|
529 | (2) |
|
14.1.3 Covariant derivatives |
|
|
531 | (2) |
|
14.1.4 The Riemann-Roch theorem |
|
|
533 | (2) |
|
14.2 Quantum theory of bosonic strings |
|
|
535 | (20) |
|
14.2.1 Vacuum amplitude of Polyakov strings |
|
|
535 | (3) |
|
14.2.2 Measures of integration |
|
|
538 | (12) |
|
14.2.3 Complex tensor calculus and string measure |
|
|
550 | (4) |
|
14.2.4 Moduli spaces of Riemann surfaces |
|
|
554 | (1) |
|
|
555 | (5) |
|
14.3.1 Moduli spaces, CKV, Beltrami and quadratic differentials |
|
|
555 | (2) |
|
14.3.2 The evaluation of determinants |
|
|
557 | (3) |
References |
|
560 | (5) |
Index |
|
565 | |