About the author |
|
xv | |
Preface |
|
xvii | |
Glossary |
|
xix | |
1 Preliminaries |
|
1 | (20) |
|
|
1 | (2) |
|
1.2 Note on deductive reasoning |
|
|
3 | (1) |
|
|
3 | (1) |
|
|
3 | (1) |
|
1.3 Euclid's The Elements |
|
|
4 | (5) |
|
|
4 | (1) |
|
|
4 | (2) |
|
1.3.3 Postulates and common notions |
|
|
6 | (1) |
|
|
7 | (1) |
|
|
7 | (1) |
|
1.3.6 Quantities or magnitudes |
|
|
8 | (1) |
|
|
9 | (1) |
|
|
9 | (1) |
|
1.4.2 Need for preparation |
|
|
9 | (1) |
|
1.5 Revision of geometrical concepts |
|
|
10 | (9) |
|
|
10 | (1) |
|
|
10 | (5) |
|
1.5.3 Distance; degree-measure of an angle |
|
|
15 | (2) |
|
1.5.4 Our treatment of congruence |
|
|
17 | (1) |
|
|
18 | (1) |
|
|
19 | (2) |
|
|
19 | (1) |
|
|
20 | (1) |
|
|
20 | (1) |
|
1.6.4 Distinctive property of real numbers among fields |
|
|
20 | (1) |
2 Basic shapes of geometry |
|
21 | (14) |
|
2.1 Lines, segments and half-lines |
|
|
21 | (5) |
|
2.1.1 Plane, points, lines |
|
|
21 | (1) |
|
2.1.2 Natural order on a line |
|
|
22 | (1) |
|
|
23 | (1) |
|
|
23 | (2) |
|
|
25 | (1) |
|
2.2 Open and closed half-planes |
|
|
26 | (2) |
|
|
26 | (1) |
|
|
26 | (1) |
|
|
27 | (1) |
|
2.3 Angle-supports, interior and exterior regions, angles |
|
|
28 | (2) |
|
2.3.1 Angle-supports, interior regions |
|
|
28 | (2) |
|
|
30 | (1) |
|
|
30 | (1) |
|
2.4 Triangles and convex quadrilaterals |
|
|
30 | (5) |
|
|
30 | (1) |
|
|
31 | (1) |
|
2.4.3 Pasch's property, 1882 |
|
|
32 | (1) |
|
2.4.4 Convex quadrilaterals |
|
|
32 | (3) |
3 Distance; degree-measure of an angle |
|
35 | (14) |
|
|
35 | (3) |
|
|
35 | (1) |
|
3.1.2 Derived properties of distance |
|
|
36 | (2) |
|
|
38 | (1) |
|
|
38 | (1) |
|
|
39 | (1) |
|
|
39 | (1) |
|
3.4 The cross-bar theorem |
|
|
40 | (1) |
|
|
40 | (1) |
|
3.5 Degree-measure of angles |
|
|
40 | (4) |
|
3.5.1 Axiom for degree-measure |
|
|
40 | (1) |
|
3.5.2 Derived properties of degree-measure |
|
|
41 | (3) |
|
3.6 Mid-line of an angle-support |
|
|
44 | (2) |
|
|
44 | (1) |
|
3.6.2 Perpendicular lines |
|
|
44 | (1) |
|
|
45 | (1) |
|
3.7 Degree-measure of reflex angles |
|
|
46 | (3) |
|
|
46 | (3) |
4 Congruence of triangles; parallel lines |
|
49 | (12) |
|
4.1 Principles of congruence |
|
|
49 | (4) |
|
4.1.1 Congruence of triangles |
|
|
49 | (4) |
|
4.2 Alternate angles, parallel lines |
|
|
53 | (2) |
|
|
53 | (1) |
|
|
54 | (1) |
|
4.3 Properties of triangles and half-planes |
|
|
55 | (6) |
|
4.3.1 Side-angle relationships; the triangle inequality |
|
|
55 | (1) |
|
4.3.2 Properties of parallelism |
|
|
56 | (1) |
|
4.3.3 Dropping a perpendicular |
|
|
56 | (1) |
|
4.3.4 Projection and axial symmetry |
|
|
57 | (4) |
5 The parallel axiom; Euclidean geometry |
|
61 | (20) |
|
|
61 | (1) |
|
5.1.1 Uniqueness of a parallel line |
|
|
61 | (1) |
|
|
62 | (2) |
|
5.2.1 Parallelograms and rectangles |
|
|
62 | (1) |
|
5.2.2 Sum of measures of wedge-angles of a triangle |
|
|
63 | (1) |
|
5.3 Ratio results for triangles |
|
|
64 | (5) |
|
5.3.1 Lines parallel to one side-line of a triangle |
|
|
64 | (3) |
|
|
67 | (2) |
|
5.4 Pythagoras' theorem, c. 550 B.C. |
|
|
69 | (1) |
|
|
69 | (1) |
|
5.5 Mid-lines and triangles |
|
|
70 | (2) |
|
|
70 | (2) |
|
5.6 Area of triangles, and convex quadrilaterals and polygons |
|
|
72 | (9) |
|
|
72 | (3) |
|
5.6.2 Area of a convex quadrilateral |
|
|
75 | (1) |
|
5.6.3 Area of a convex polygon |
|
|
75 | (6) |
6 Cartesian coordinates; applications |
|
81 | (22) |
|
6.1 Frame of reference, Cartesian coordinates |
|
|
81 | (4) |
|
|
81 | (4) |
|
6.2 Algebraic note on linear equations |
|
|
85 | (1) |
|
|
85 | (1) |
|
6.3 Cartesian equation of a line |
|
|
86 | (3) |
|
|
86 | (3) |
|
6.4 Parametric equations of a line |
|
|
89 | (3) |
|
|
89 | (3) |
|
6.5 Perpendicularity and parallelism of lines |
|
|
92 | (1) |
|
|
92 | (1) |
|
6.6 Projection and axial symmetry |
|
|
93 | (2) |
|
|
93 | (1) |
|
6.6.2 Formula for area of a triangle |
|
|
94 | (1) |
|
6.6.3 Inequalities for closed half-planes |
|
|
95 | (1) |
|
6.7 Coordinate treatment of harmonic ranges |
|
|
95 | (8) |
|
6.7.1 New parametrisation of a line |
|
|
95 | (2) |
|
6.7.2 Interchange of pairs of points |
|
|
97 | (1) |
|
6.7.3 Distances from mid-point |
|
|
98 | (1) |
|
6.7.4 Distances from end-point |
|
|
98 | (1) |
|
6.7.5 Construction for a harmonic range |
|
|
99 | (4) |
7 Circles; their basic properties |
|
103 | (18) |
|
7.1 Intersection of a line and a circle |
|
|
103 | (2) |
|
|
103 | (2) |
|
7.2 Properties of circles |
|
|
105 | (2) |
|
|
105 | (1) |
|
7.2.2 Equation of a circle |
|
|
106 | (1) |
|
7.2.3 Circle through three points |
|
|
106 | (1) |
|
7.3 Formula for mid-line of an angle-support |
|
|
107 | (1) |
|
|
107 | (1) |
|
7.4 Polar properties of a circle |
|
|
108 | (4) |
|
7.4.1 Tangents from an exterior point |
|
|
108 | (1) |
|
7.4.2 The power property of a circle |
|
|
109 | (2) |
|
|
111 | (1) |
|
7.5 Angles standing on arcs of circles |
|
|
112 | (2) |
|
|
112 | (2) |
|
7.5.2 Minor and major arcs of a circle |
|
|
114 | (1) |
|
|
114 | (7) |
|
|
114 | (3) |
|
7.6.2 Sensed products and a circle |
|
|
117 | (1) |
|
7.6.3 Radical axis and coaxal circles |
|
|
118 | (3) |
8 Translations; axial symmetries; isometries |
|
121 | (8) |
|
8.1 Translations and axial symmetries |
|
|
121 | (2) |
|
|
121 | (2) |
|
|
123 | (4) |
|
|
123 | (4) |
|
|
127 | (1) |
|
8.3 Translation of frame of reference |
|
|
127 | (2) |
9 Trigonometry; cosine and sine; addition formulae |
|
129 | (16) |
|
9.1 Indicator of an angle |
|
|
129 | (1) |
|
|
129 | (1) |
|
9.2 Cosine and sine of an angle |
|
|
130 | (3) |
|
|
130 | (2) |
|
|
132 | (1) |
|
|
133 | (1) |
|
9.3 Angles in standard position |
|
|
133 | (6) |
|
9.3.1 Angles in standard position |
|
|
133 | (2) |
|
|
135 | (1) |
|
9.3.3 Modified addition of angles |
|
|
136 | (2) |
|
9.3.4 Subtraction of angles |
|
|
138 | (1) |
|
9.3.5 Integer multiples of an angle |
|
|
138 | (1) |
|
9.3.6 Standard multiples of a right-angle |
|
|
138 | (1) |
|
|
139 | (1) |
|
|
139 | (1) |
|
9.5 The cosine and sine rules |
|
|
140 | (3) |
|
|
140 | (1) |
|
|
141 | (1) |
|
|
142 | (1) |
|
9.5.4 The Steiner-Lehmus theorem, 1842 |
|
|
142 | (1) |
|
9.6 Cosine and sine of angles equal in magnitude |
|
|
143 | (2) |
|
|
143 | (2) |
10 Complex coordinates; sensed angles; angles between lines |
|
145 | (40) |
|
|
145 | (3) |
|
|
145 | (3) |
|
10.2 Complex-valued distance |
|
|
148 | (2) |
|
10.2.1 Complex-valued distance |
|
|
148 | (1) |
|
10.2.2 A complex-valued trigonometric function |
|
|
148 | (2) |
|
10.3 Rotations and axial symmetries |
|
|
150 | (3) |
|
|
150 | (1) |
|
10.3.2 Formula for an axial symmetry |
|
|
151 | (2) |
|
|
153 | (3) |
|
|
153 | (3) |
|
|
156 | (2) |
|
|
156 | (1) |
|
10.5.2 Sensed-area of a triangle |
|
|
156 | (1) |
|
10.5.3 A basic feature of sensed-area |
|
|
157 | (1) |
|
10.5.4 An identity for sensed-area |
|
|
157 | (1) |
|
10.6 Isometries as compositions |
|
|
158 | (2) |
|
|
158 | (2) |
|
10.7 Orientation of a triple of non-collinear points |
|
|
160 | (2) |
|
|
160 | (2) |
|
10.8 Sensed angles of triangles, the sine rule |
|
|
162 | (2) |
|
|
162 | (2) |
|
10.9 Some results on circles |
|
|
164 | (4) |
|
10.9.1 A necessary condition to lie on a circle |
|
|
164 | (1) |
|
10.9.2 A sufficient condition to lie on a circle |
|
|
165 | (1) |
|
10.9.3 Complex cross-ratio |
|
|
165 | (1) |
|
10.9.4 Ptolemy's theorem, c. 200 A.D. |
|
|
166 | (2) |
|
10.10 Angles between lines |
|
|
168 | (8) |
|
|
168 | (1) |
|
|
168 | (1) |
|
|
169 | (1) |
|
10.10.4 Duo-angles in standard position |
|
|
169 | (2) |
|
10.10.5 Addition of duo-angles in standard position |
|
|
171 | (2) |
|
10.10.6 Addition formulae for tangents of duo-angles |
|
|
173 | (1) |
|
10.10.7 Associativity of addition of duo-angles |
|
|
174 | (1) |
|
10.10.8 Group properties of duo-angles; sensed duo-angles |
|
|
175 | (1) |
|
|
176 | (1) |
|
10.11 A case of Pascal's theorem, 1640 |
|
|
176 | (9) |
|
|
176 | (2) |
|
|
178 | (2) |
|
|
180 | (5) |
11 Vector and complex-number methods |
|
185 | (54) |
|
|
185 | (2) |
|
|
185 | (2) |
|
11.2 Sum of couples, multiplication of a couple by a scalar |
|
|
187 | (3) |
|
|
187 | (1) |
|
11.2.2 Vector space over R |
|
|
188 | (2) |
|
11.3 Scalar or dot products |
|
|
190 | (2) |
|
|
190 | (2) |
|
11.4 Components of a vector |
|
|
192 | (3) |
|
|
192 | (1) |
|
|
193 | (1) |
|
11.4.3 Cartesian coordinates from areal coordinates |
|
|
193 | (1) |
|
|
193 | (1) |
|
|
194 | (1) |
|
11.5 Vector methods in geometry |
|
|
195 | (11) |
|
11.5.1 Menelaus' theorem, c. 100 A.D |
|
|
195 | (1) |
|
11.5.2 Ceva's theorem and converse, 1678 A.D. |
|
|
196 | (3) |
|
11.5.3 Desargues' perspective theorem, 1648 A.D. |
|
|
199 | (2) |
|
11.5.4 Pappus' theorem, c. 300 A.D. |
|
|
201 | (2) |
|
11.5.5 Centroid of a triangle |
|
|
203 | (1) |
|
11.5.6 Orthocentre of a triangle |
|
|
203 | (2) |
|
11.5.7 Incentre of a triangle |
|
|
205 | (1) |
|
|
206 | (20) |
|
11.6.1 Grassmann's supplement of a vector |
|
|
206 | (1) |
|
|
207 | (1) |
|
11.6.3 Handling a triangle |
|
|
207 | (2) |
|
11.6.4 Circumcentre of a triangle |
|
|
209 | (2) |
|
11.6.5 Other distinguished points for a triangle |
|
|
211 | (4) |
|
11.6.6 Euler line of a triangle |
|
|
215 | (1) |
|
|
215 | (2) |
|
11.6.8 Centroids of similar triangles erected on the sides of a triangle |
|
|
217 | (1) |
|
11.6.9 Circumcentres of similar triangles on sides of triangle |
|
|
218 | (1) |
|
11.6.10 Triangle with vertices the mid-points of sides of given triangle |
|
|
219 | (3) |
|
11.6.11 The nine-point circle |
|
|
222 | (3) |
|
11.6.12 Parametric equations of lines |
|
|
225 | (1) |
|
11.7 Some well-known theorems |
|
|
226 | (8) |
|
11.7.1 Feuerbach's theorem, 1822 |
|
|
226 | (3) |
|
11.7.2 The Wallace-Simson line, 1797 |
|
|
229 | (2) |
|
11.7.3 The incentre on the Euler line of a triangle |
|
|
231 | (1) |
|
11.7.4 Miquel's theorem, 1838 |
|
|
232 | (2) |
|
|
234 | (5) |
|
11.8.1 Isogonal conjugates |
|
|
234 | (1) |
|
|
235 | (1) |
|
|
235 | (4) |
12 Trigonometric functions in calculus |
|
239 | (12) |
|
12.1 Repeated bisection of an angle |
|
|
239 | (2) |
|
|
239 | (2) |
|
|
241 | (4) |
|
|
241 | (4) |
|
|
245 | (1) |
|
12.3 Derivatives of cosine and sine functions |
|
|
245 | (1) |
|
|
245 | (1) |
|
12.4 Parametric equations for a circle |
|
|
246 | (2) |
|
|
246 | (1) |
|
12.4.2 Length of an arc of a circle |
|
|
247 | (1) |
|
|
247 | (1) |
|
12.5 Extension of domains of cosine and sine |
|
|
248 | (3) |
|
|
248 | (1) |
|
|
249 | (2) |
Appendix; List of axioms |
|
251 | (2) |
Bibliography |
|
253 | (1) |
Index |
|
254 | |