Atjaunināt sīkdatņu piekrišanu

E-grāmata: Global Kinetic Model for Electron Radiation Belt Formation and Evolution

  • Formāts: PDF+DRM
  • Sērija : Springer Theses
  • Izdošanas datums: 25-Mar-2015
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783662466513
  • Formāts - PDF+DRM
  • Cena: 106,47 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Springer Theses
  • Izdošanas datums: 25-Mar-2015
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783662466513

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This thesis focuses on the construction and application of an electron radiation belt kinetic model including various adiabatic and non-adiabatic processes. The terrestrial radiation belt was discovered over 50 years ago and has received a resurgence of interest in recent years. The main drivers of radiation belt research are the fundamental science questions surrounding its complex and dramatic dynamics and particularly its potential hazards posed to space-borne systems. The establishment of physics-based radiation belt models will be able to identify the contributions of various mechanisms, forecast the future radiation belt evolution and then mitigate its adverse space weather effects.

Dr. Su is now an Professor works in Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei, China.

1 Background and Motivation
1(12)
1.1 Magnetosphere
1(1)
1.2 Electron Radiation Belt Dynamics
1(3)
1.2.1 Response to Geomagnetic Storms
2(1)
1.2.2 Response to Substorms
2(1)
1.2.3 Response to Solar Cycles and Seasons
3(1)
1.3 Basic Theory
4(5)
1.3.1 Single-Particle Orbit Theory
4(3)
1.3.2 Kinetic Theory
7(2)
1.4 Research Contents
9(4)
References
10(3)
2 Local Diffusion
13(28)
2.1 Introduction
13(1)
2.2 Local Radiation Belt Diffusion Model
14(7)
2.2.1 Background Magnetic Field
14(1)
2.2.2 Basic Equation
14(2)
2.2.3 Diffusion Coefficients
16(3)
2.2.4 Numerical Method
19(2)
2.3 Idealized Simulations
21(10)
2.3.1 Chorus
21(1)
2.3.2 Hiss
22(5)
2.3.3 EMIC
27(4)
2.4 Conclusions and Discussions
31(10)
References
35(6)
3 Radial Diffusion
41(22)
3.1 Introduction
41(1)
3.2 Global Radiation Belt Diffusion Model STEERB
42(7)
3.2.1 Background Magnetic Field
42(1)
3.2.2 Basic Equation
42(2)
3.2.3 Diffusion Coefficients
44(3)
3.2.4 Numerical Method
47(2)
3.3 Idealized Simulations
49(7)
3.3.1 Steady State
49(1)
3.3.2 Storm-Time Dynamics
49(7)
3.4 Conclusions and Discussions
56(7)
References
58(5)
4 Adiabatic Transport
63(24)
4.1 Introduction
63(1)
4.2 Improved Global Radiation Belt Diffusion Model STEERB
64(3)
4.2.1 Background Magnetic Field
64(1)
4.2.2 Basic Equation
64(1)
4.2.3 Diffusion Coefficients
65(1)
4.2.4 Numerical Method
65(2)
4.3 Idealized Simulations
67(9)
4.3.1 Fully Adiabatic Transport
67(3)
4.3.2 Combination of Adiabatic and Nonadiabatic Processes
70(6)
4.4 Application
76(5)
4.4.1 Background
76(2)
4.4.2 Observations
78(1)
4.4.3 Simulations
78(3)
4.5 Conclusions and Discussions
81(6)
References
84(3)
5 Magnetospheric Convection
87(14)
5.1 Introduction
87(1)
5.2 Global Radiation Belt Convection-Diffusion Model STEERB
88(3)
5.2.1 Background Electromagnetic Fields
88(1)
5.2.2 Basic Equation
89(1)
5.2.3 Convection and Diffusion Coefficients
89(1)
5.2.4 Numerical Method
90(1)
5.3 Application
91(5)
5.3.1 Background
91(1)
5.3.2 Inputs
91(1)
5.3.3 Outputs
92(4)
5.4 Conclusions and Discussions
96(5)
References
97(4)
6 Summary
101(3)
6.1 Developing of STTERB Model and Obtained Physical Results
101(1)
6.2 Comparison of Radiation Belt Kinetic Models
102(2)
6.3 Future Developments of STEERB Model
104(1)
References 104
Dr. Su is now an Associate Professor works in Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei, China.

Honors: Excellent Doctoral Dissertation Award of Chinese Academy of Sciences Special Prize of the President Scholarship of Chinese Academy of Sciences

Publication list: 1. Su, Z. P., Zhu, H., Xiao, F. L., Zheng, H. N., Wang, Y. M., He, Z. G., Shen, C., Shen, C. L., Wang, C. B., Liu, R., Zhang, M., Wang, S., Kletzing, C. A., Kurth, W. S., Hospodarsky, G. B., Spence, H. E., Reeves, G. D. Funsten, H. O., Blake, J. B., and Baker, D. N., Intense duskside lower-band chorus waves observed by Van Allen Probes: Generation and potential acceleration effect on radiation belt electrons, J. Geophys. Res., 119, 42664273, 2014. 2. Su, Z. P., Zhu, H., Xiao, F. L., Zheng, H. N., Zhang, M., Liu, Y., Shen, C., Wang, Y. M., and Wang, S., Latitudinal dependence of nonlinear interaction between electromagnetic ion cyclotron wave and terrestrial ring current ions, Phys. Plasmas, 21, 052310, 2014. 3. Su, Z. P., Xiao, F. L., Zheng, H. N., He, Z. G., Zhu, H., Zhang, M., Shen, C., Wang, Y. M., Wang, S., Kletzing, C. A., Kurth, W. S., Hospodarsky, G. B., Spence, H. E., Reeves, G. D., Funsten, H. O., Blake, J. B., and Baker, D. N., Nonstorm-time dynamics of electron radiation belts observed by the Van Allen Probes, Geophys. Res. Lett., 41, 229235, 2014. 4. Su, Z. P., Zhu, H., Xiao, F. L., Zheng, H. N., Shen, C., Wang, Y. M., and Wang, S., Latitudinal dependence of nonlinear interaction between electromagnetic ion cyclotron wave and radiation belt relativistic electrons, J. Geophys. Res., 118, 31883202, 2013. 5. Su, Z. P., Zhu, H., Xiao, F. L., Zheng, H. N., Shen, C., Wang, Y. M., and Wang, S., Bounce-averaged advection and diffusion coefficients for monochromatic electromagnetic ion cyclotron wave: Comparison between test-particle and quasi-linear models, J. Geophys. Res.,117, A09222, 2012. 6. Su, Z. P., Zong, Q.-G., Yue, C., Wang, Y. F., Zhang, H., and Zheng, H. N., Proton auroral intensification induced by interplanetary shock on 7 November 2004, J. Geophys. Res., 116, A08223, 2011. 7. Su, Z. P., Xiao, F. L., Zheng, H. N., and Wang, S., Radiation belt electron dynamics driven by adiabatic transport, radial diffusion, and wave-particle interactions, J. Geophys. Res., 116, A04205, 2011.

8. Su, Z. P., Xiao, F. L., Zheng, H. N., and Wang, S., CRRES observation and STEERB simulation of the 9 October 1990 electron radiation belt dropout event, Geophys. Res. Lett., 38, L06106, 2011. 9. Su, Z. P., Zheng, H. N., Chen, L. X., and Wang, S., Numerical simulations of storm-time outer radiation belt dynamics by wave-particle interactions including cross diffusion, J. Atoms. Sol.-Terres. Phys., 73, 95-105, 2011. 10. Su, Z. P., Xiao, F. L., Zheng, H. N., and Wang, S., Combined radial diffusion and adiabatic transport of radiation belt electrons with arbitrary pitch-angles, J. Geophys. Res., 115, A10249, 2010. 11. Su, Z. P., Xiao, F. L., Zheng, H. N., and Wang, S., STEERB: A three-dimensional code for storm-time evolution of electron radiation belt, J. Geophys. Res., 115, A09208, 2010. 12. Su, Z. P., Zheng, H. N., and Wang, S., Three dimensional simulation of energetic outer zone electron dynamics due to wave-particle interaction and azimuthal advection, J. Geophys. Res., 115, A06203, 2010. 13. Su, Z. P., Zheng, H. N., and Wang, S., A parametric study on the diffuse auroral precipitation by resonant interaction with whistler-mode chorus, J. Geophys. Res., 115, A05219, 2010. 14. Su, Z. P., Zheng, H. N., and Wang, S., Evolution of electron pitch angle distribution due to interactions with whistler-mode chorus following substorm injections, J. Geophys. Res., 114, A08202, 2009. 15. Su, Z. P., Zheng, H. N., and Wang, S., Dynamic evolution of energetic outer zone electrons due to whistler-mode chorus based on a realistic density model, J. Geophys. Res., 114, A07201, 2009.