Atjaunināt sīkdatņu piekrišanu

E-grāmata: GLOBAL TROPICAL CYCLOGENESIS

  • Formāts: PDF+DRM
  • Sērija : Environmental Sciences
  • Izdošanas datums: 09-Dec-2011
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783642132964
  • Formāts - PDF+DRM
  • Cena: 154,06 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Environmental Sciences
  • Izdošanas datums: 09-Dec-2011
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783642132964

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Cyclogenesis research is a central issue of meteorology and climatology. This book gives a deep specific view and fundamentally and effectively contributes to the discussion of the problem. It treats cyclogenisis as a stochastic process in a very fundamental way. Since the publication of the first edition of Global Tropical Cyclogenesis in 2001, a number of important scientific results has been obtained using methods and techniques proposed in that first edition. There is therefore a great need for a revised 2nd edition of this book. It is based on scientific findings from the performance of satellite data processing and a series of scientific marine expeditions to the tropics as part of major Russian Science Academy research projects. Professor Eugene A. Sharkov has proposed the main approaches, experimental techniques and theoretical explanations for many scientific findings as well as new methods of satellite processing. He is recognized as a leading scientist in the field of microwave remote sensing of terrestrial surfaces and atmosphere and in nonlinear geophysics (origination and evolution of atmospheric catastrophes) and has published around 100 scientific works on the problems of global tropical cyclogenesis structure and evolution.

This book provides important and valuable insights into the genesis of tropical cyclones. It is based on scientific findings from the performance of satellite data processing and a series of scientific marine expeditions to the tropics.
Preface to the Second Edition xiii
Preface to the First Edition xvii
List of figures
xxi
List of tables
xxix
List of abbreviations and acronyms
xxxiii
1 Introduction: Scientific and applied rationales for the study of tropical cyclogenesis
1(10)
1.1 International efforts on tropical cyclogenesis study
2(3)
1.2 Present state of the art of tropical cyclogenesis study
5(6)
1.2.1 What do we know?
6(1)
1.2.2 What do we not know?
6(1)
1.2.3 What tools are available to us now?
7(4)
2 Global tropical cyclogenesis as a stochastic process
11(92)
2.1 Information signal model: Simulation, cumulation
11(3)
2.2 Annual single-component stochastic model of global tropical cyclogenesis
14(15)
2.2.1 Time series and cumulative functions of global tropical cyclogenesis
14(1)
2.2.2 Probability model and its parameters
15(10)
2.2.3 Interannual variabilities
25(1)
2.2.4 Poisson random model
26(3)
2.3 Annual two-component stochastic model of global tropical cyclogenesis
29(5)
2.3.1 Two-component probability model and its parameters
29(3)
2.3.2 Interannual variabilities for the two-component model
32(2)
2.4 Tropical cyclogenesis of the northern and southern hemispheres
34(15)
2.4.1 Time series and cumulative functions for hemisphere cyclogenesis
34(2)
2.4.2 Probability model and its parameters
36(4)
2.4.3 Intermittency coefficient and "true" intensity
40(4)
2.4.4 Interannual variability between northern hemisphere and southern hemisphere cyclogenesis
44(5)
2.5 Evolution of tropical cyclone initial forms as a stochastic process
49(18)
2.5.1 Simulation of an information signal
50(1)
2.5.2 Time series of the intensity of initial and mature forms
51(3)
2.5.3 Probability models of the intensity of initial and mature forms
54(3)
2.5.4 Integral intensity of processes
57(2)
2.5.5 Rate of hurricane formation
59(3)
2.5.6 Regional features of Pacific cyclogenesis
62(3)
2.5.7 Regional features of Indian Ocean cyclonic activity
65(1)
2.5.8 Regional features of Atlantic Ocean cyclogenesis
66(1)
2.6 Large-scale structure of global tropical cyclogenesis
67(11)
2.6.1 Spatiotemporal variability in global cyclogenesis
67(3)
2.6.2 Intra-annual variation of global cyclogenesis
70(1)
2.6.3 Spatial structure of generation centers
71(7)
2.7 Hierarchical structure of global tropical cyclogenesis
78(12)
2.7.1 Main properties and examples of wavelet transform
78(8)
2.7.2 Wavelet patterns of global tropical cyclogenesis
86(4)
2.8 Hierarchical structure of popular service systems
90(7)
2.8.1 Critical parameter of traffic services
91(1)
2.8.2 Forming a time series for the traffic process
91(1)
2.8.3 Wavelet patterns of disruption to traffic intensity
92(3)
2.8.4 Possible physical models
95(2)
2.9 Magnetosphere processes and global tropical cyclogenesis
97(6)
3 Regional tropical cyclogenesis
103(108)
3.1 Pacific tropical cyclogenesis as a stochastic process
103(10)
3.1.1 Probability models of Pacific cyclogenesis intensity
104(4)
3.1.2 Interannual variability of Pacific cyclogenesis
108(2)
3.1.3 Intermittency coefficient and the true intensity of Pacific cyclogenesis
110(3)
3.2 Thermal stratification of tropical atmosphere and Pacific cyclogenesis
113(19)
3.2.1 Initial observational data and processing methodology
113(4)
3.2.2 Spatiotemporal statistics of gradient fields
117(3)
3.2.3 Thermal stratification of the atmosphere by the action of tropical cyclones
120(3)
3.2.4 Thermal stratification of a disturbed atmosphere (resulting from radiosonde data)
123(3)
3.2.5 Thermal stratification of the tropical atmosphere by the action of tropical cyclone formation
126(6)
3.3 Spatiotemporal features of atmospheric moisture and Pacific cyclogenesis
132(16)
3.3.1 Observational data and processing procedure
133(2)
3.3.2 Precipitable water fields in an undisturbed atmosphere
135(3)
3.3.3 Precipitable water fields in a disturbed atmosphere
138(1)
3.3.4 Model of precipitable water fields and their properties under various synoptic conditions
138(2)
3.3.5 Mesoscale variability in precipitable water fields in the process of cyclogenesis
140(1)
3.3.6 Correlation with "one-point" measurements of precipitable water content
141(2)
3.3.7 Atmospheric water balance under pre-typhoon and typhoon conditions
143(5)
3.4 Initial stage of tropical cyclogenesis in the Pacific: Dynamics, interactions, hierarchy
148(51)
3.4.1 Two-stage conceptual model of tropical cyclogenesis
150(5)
3.4.2 Dynamics and interactions of original forms of TCs
155(12)
3.4.3 Hierarchy and clusterization of tropical convective systems
167(21)
3.4.4 Fractal features of superconvective clusters
188(4)
3.4.5 Spatiotemporal evolution of convective cluster meso-turbulence with high-precision Doppler radar
192(7)
3.5 Variation in tropical cyclone activity and El Nino-Southern Oscillation
199(12)
4 Global tropical cyclogenesis and global change
211(84)
4.1 Universal generation constant for a stochastic mode of global tropical cyclogenesis
211(10)
4.1.1 Statement of the problem
211(2)
4.1.2 Modern approaches and signal formation principles
213(3)
4.1.3 Universal constant for global and hemisphere cyclogeneses
216(5)
4.2 Tropical cyclogenesis and sea surface temperature fields (global and regional scales)
221(20)
4.2.1 Statement of the problem
221(2)
4.2.2 Observational data and their processing
223(2)
4.2.3 Statistical processing results for global cyclogenesis
225(4)
4.2.4 Statistical properties of global cyclogenesis
229(3)
4.2.5 Statistical features of mature form genesis in the SST field based on in situ data
232(4)
4.2.6 Statistical features of mature form genesis in the SST field based on remote and in situ data
236(4)
4.2.7 Features of the statistical properties of regional cyclogenesis
240(1)
4.3 Global radiothermal fields for study of the atmosphere--ocean system
241(20)
4.3.1 The role of microwave sounding in space monitoring
242(2)
4.3.2 Representation of the global radiothermal field as a computer animation
244(3)
4.3.3 Possibilities of using the radiothermal data of satellite monitoring
247(4)
4.3.4 Evolution of the radiothermal field of TC "Alberto"
251(10)
4.4 Global water vapor field as the energy source of tropical cyclones
261(21)
4.4.1 Statement of the problem
261(2)
4.4.2 Initial data of satellite-sounding and information-processing algorithms
263(3)
4.4.3 Entrainment effect in the evolution of TC "Gonu"
266(1)
4.4.4 Entrainment effect in the example of TC "Hondo" evolution
267(11)
4.4.5 Time evolution of TC "Hondo" and TC "Ivan" and their interaction in the integral water vapor field
278(4)
4.5 Latent heat energy transport by plural tropical cyclogenesis
282(13)
4.5.1 Statement of the problem
283(1)
4.5.2 Plural tropical cyclogenesis evolution
284(5)
4.5.3 Initial data for satellite sensing
289(1)
4.5.4 Information-processing technique and algorithms
289(2)
4.5.5 Spatiotemporal evolution of tropical cyclogenesis in the global water vapor field
291(4)
5 Solar activity and global tropical cyclogenesis
295(20)
5.1 Statement of the problem: Short history of viewpoints
295(2)
5.2 Study techniques and approaches: Processing technique
297(2)
5.3 Features of wavelet processing
299(3)
5.4 Annual and interannual variabilities of solar activity and cyclogenesis
302(4)
5.5 Correlation of annual time series
306(3)
5.6 Searching for 27-day periodicity in the time series of cyclogenesis
309(1)
5.7 Features of multiyear cyclogenesis data
310(5)
6 Ionosphere and tropical cyclone activity
315(22)
6.1 Statement of the problem and measurement techniques for ionosphere sounding
315(3)
6.2 Equatorial lower-ionosphere interactions with tropical cyclones studied by rocket sounding
318(4)
6.3 Large-scale upper-ionosphere variability measurement by oblique path radiosounding
322(7)
6.4 Tropical cyclone activity in mesospheric airglow
329(8)
7 Physical models and simulations of global tropical cyclogenesis
337(42)
7.1 Statistical synoptical modeling and forecasting
338(7)
7.1.1 Seasonal genesis parameters
338(1)
7.1.2 North Atlantic seasonal forecasts
339(3)
7.1.3 Development of the statistical synoptical approach
342(3)
7.2 Global climate change models and tropical cyclone genesis
345(11)
7.3 Kinetic diffusion approach
356(6)
7.3.1 Principles of the formation of a signal
357(1)
7.3.2 Correlation properties
358(2)
7.3.3 Kinetic diffusion model
360(1)
7.3.4 Radiophysical analogue
361(1)
7.3.5 Ways of improving the model
362(1)
7.4 Concept of self-organization
362(7)
7.4.1 Elements of qualitative analysis
363(1)
7.4.2 Helix mechanism for the formation of large-scale structures
364(1)
7.4.3 Effect of thermally insulated boundaries on the formation of large-scale structures
365(1)
7.4.4 Turbulent wave dynamo
366(1)
7.4.5 Diagnostic problems
367(2)
7.5 Instability genesis in a compressed and saturated moist air atmosphere
369(10)
7.5.1 Basic mechanisms involved in catastrophe genesis
370(2)
7.5.2 Role played by phase passing
372(2)
7.5.3 Physical mechanism involved in rotational instability
374(2)
7.5.4 New requirements for remote-sensing systems
376(3)
8 Databases of global tropical cyclogenesis
379(62)
8.1 Scientific and applied philosophy of global cyclogenesis dataset design
379(3)
8.2 Historical perspectives
382(2)
8.3 Existing archiving procedures and current archives
384(12)
8.3.1 Areas of responsibility
384(2)
8.3.2 JTWC services and products
386(4)
8.3.3 NHC services and products
390(3)
8.3.4 Global tropical cyclogenesis archives
393(3)
8.4 The global tropical cyclogenesis dataset Global-TC
396(4)
8.4.1 Principles of database design
396(1)
8.4.2 Data preparation technique
397(1)
8.4.3 Chronological data unit
398(1)
8.4.4 Evolutionary data unit
398(1)
8.4.5 Computational architecture of dataset
399(1)
8.5 Geoinformation dataset Pacific-TC
400(6)
8.5.1 Principles used to develop the database
400(1)
8.5.2 Structure of geophysical data
401(2)
8.5.3 Computational architecture
403(1)
8.5.4 Visualization of information
404(2)
8.6 Combined satellite and in situ Scenario-TC database
406(13)
8.6.1 Methodological problems of observation of atmospheric catastrophes
406(5)
8.6.2 Scenario principles of geophysical data formation
411(1)
8.6.3 Two experiments: the conglomerate scenario and the pursuit scenario
412(7)
8.7 The long-standing Global-RT database for the global radio-thermal fields of the Earth
419(11)
8.7.1 The need for global databases to provide computer animations
419(5)
8.7.2 Principles of the design of the Global-RT database
424(1)
8.7.3 Structure and data presentation in the Global-RT database
425(1)
8.7.4 Basic data types generated as a result of user queries
426(2)
8.7.5 Special software to cope with accumulated data
428(2)
8.7.6 Future developments
430(1)
8.8 Integrated object-related database of tropical cyclones in the global water vapor field
430(11)
8.8.1 Considerations for the design of an integrated object-related database
431(1)
8.8.2 EVA-00 database structure
432(3)
8.8.3 EVA-00 database products
435(6)
9 Remote sensing activity for cyclogenesis studies
441(52)
9.1 Position of tropical studies in existing space programs
442(16)
9.1.1 Ongoing missions and development trends
442(10)
9.1.2 Future missions relevant to tropical studies
452(6)
9.2 Missions for tropical convective system study
458(5)
9.2.1 TRMM mission
458(3)
9.2.2 TROPIQUES mission
461(2)
9.3 Russian satellite systems relevant to tropical studies
463(15)
9.3.1 Meteor-2 and Meteor-3 series
464(2)
9.3.2 Resurs-01 and Resurs-F series
466(3)
9.3.3 Geostationary Operational Meteorological Satellite Electro (GOMS)
469(1)
9.3.4 Priroda mission
470(4)
9.3.5 Meteor-3M system
474(1)
9.3.6 Some aspects of the Russian remote-sensing program
474(4)
9.4 Special Russian missions for TC study
478(15)
9.4.1 Preliminary background to the projects
479(2)
9.4.2 Mission Zodiak
481(6)
9.4.3 Mission Helix
487(4)
9.4.4 International and practical aspects of the projects
491(2)
A Tables: Quantitative data on the spatiotemporal features of global and regional tropical cyclogenesis for 1983--2010 493(72)
B Saffir-Simpson Hurricane Scale 565(4)
References and bibliography 569(28)
Index 597