Atjaunināt sīkdatņu piekrišanu

Global Well-Posedness of High Dimensional Maxwell-Dirac for Small Critical Data [Mīkstie vāki]

  • Formāts: Paperback / softback, 94 pages, height x width: 254x178 mm, weight: 215 g
  • Sērija : Memoirs of the American Mathematical Society
  • Izdošanas datums: 30-Jul-2020
  • Izdevniecība: American Mathematical Society
  • ISBN-10: 147044111X
  • ISBN-13: 9781470441111
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 97,63 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 94 pages, height x width: 254x178 mm, weight: 215 g
  • Sērija : Memoirs of the American Mathematical Society
  • Izdošanas datums: 30-Jul-2020
  • Izdevniecība: American Mathematical Society
  • ISBN-10: 147044111X
  • ISBN-13: 9781470441111
Citas grāmatas par šo tēmu:
Gavrus and Oh prove global well-posedness of the massless high-dimensional Maxwell-Dirac equation in the Coulomb gauge for data with small scale-critical Sobolev norm, as well as modified scattering of the solutions. The main components of their proof are uncovering null structure of Maxwell-Dirac in the Coulomb gauge, and proving the solvability of the underlying covariant Dirac equation. A key step for achieving both, they say, is to exploit and justify a deep analogy between Maxwell-Dirac and Maxwell-Klein-Gordon, which says that the most difficult part of Maxwell-Dirac takes essentially the same form as Maxwell-Klein-Gordon. They point out that Krieger-Sterbenz-Tataru proved an analogous analogy in 2015. Annotation ©2020 Ringgold, Inc., Portland, OR (protoview.com)
Cristian Gavrus, University of California, Berkeley, CA.

Sung-Jin Oh, Korea Institute for Advanced Study, Seoul, Republic of Korea.