Atjaunināt sīkdatņu piekrišanu

Global Well-posedness of Nonlinear Parabolic-Hyperbolic Coupled Systems 2012 [Mīkstie vāki]

  • Formāts: Paperback / softback, 171 pages, height x width: 240x168 mm, weight: 454 g, X, 171 p., 1 Paperback / softback
  • Sērija : Frontiers in Mathematics
  • Izdošanas datums: 01-Mar-2012
  • Izdevniecība: Birkhauser Verlag AG
  • ISBN-10: 303480279X
  • ISBN-13: 9783034802796
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 51,37 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 60,44 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 171 pages, height x width: 240x168 mm, weight: 454 g, X, 171 p., 1 Paperback / softback
  • Sērija : Frontiers in Mathematics
  • Izdošanas datums: 01-Mar-2012
  • Izdevniecība: Birkhauser Verlag AG
  • ISBN-10: 303480279X
  • ISBN-13: 9783034802796
Citas grāmatas par šo tēmu:

Including previously unpublished material, this volume presents recent results on nonlinear parabolic-hyperbolic coupled systems such as the compressible Navier-Stokes equations. It also summarizes the latest research by the authors and their collaborators.



This book presents recent results on nonlinear parabolic-hyperbolic coupled systems such as the compressible Navier-Stokes equations, and liquid crystal system. It summarizes recently published research by the authors and their collaborators, but also includes new and unpublished material. All models under consideration are built on compressible equations and liquid crystal systems. This type of partial differential equations arises not only in many fields of mathematics, but also in other branches of science such as physics, fluid dynamics and material science.

Recenzijas

From the reviews:

This book will be a valuable resource for graduate students and researchers interested in partial differential equations, and will also benefit practitioners in physics and engineering. (Oleg Dementiev, zbMATH, Vol. 1273, 2013)

Preface ix
1 Global Existence of Spherically Symmetric Solutions for Nonlinear Compressible Non-autonomous Navier-Stokes Equations
1.1 Introduction
1(3)
1.2 Global Existence of Solutions in H1
4(15)
1.3 Global Existence of Solutions in H2
19(6)
1.4 Global Existence of Solutions in H4
25(7)
1.5 Bibliographic Comments
32(1)
2 Global Existence and Exponential Stability for a Real Viscous Heat-conducting Flow with Shear Viscosity
2.1 Introduction
33(5)
2.2 Proof of Theorem 2.1.1
38(8)
2.3 Proof of Theorem 2.1.2
46(7)
2.4 Proof of Theorem 2.1.3
53(20)
2.5 Bibliographic Comments
73(2)
3 Regularity and Exponential Stability of the pth Power Newtonian Fluid in One Space Dimension
3.1 Introduction
75(3)
3.2 Proof of Theorem 3.1.1
78(11)
3.3 Proof of Theorem 3.1.2
89(2)
3.4 Bibliographic Comments
91(2)
4 Global Existence and Exponential Stability for the pth Power Viscous Reactive Gas
4.1 Introduction
93(3)
4.2 Global Existence in H2
96(9)
4.3 Exponential Stability in H2
105(7)
4.4 Proof of Theorem 4.1.2
112(13)
4.5 Bibliographic Comments
125(2)
5 On a ID Viscous Reactive and Radiative Gas with First-order Arrhenius Kinetics
5.1 Introduction
127(5)
5.2 Global Existence in H1
132(24)
5.3 Exponential Stability in H1
156(1)
5.4 Proof of Theorem 5.1.2
157(2)
5.5 Proof of Theorem 5.1.3
159(2)
5.6 Bibliographic Comments
161(4)
Bibliography 165(6)
Index 171