Atjaunināt sīkdatņu piekrišanu

GNSS Software Receivers [Hardback]

Edited by (Aalborg University, Denmark), Edited by , Edited by , Edited by (Universitat Autņnoma de Barcelona)
  • Formāts: Hardback, 354 pages, height x width x depth: 250x175x21 mm, weight: 770 g, Worked examples or Exercises
  • Izdošanas datums: 17-Nov-2022
  • Izdevniecība: Cambridge University Press
  • ISBN-10: 1108837018
  • ISBN-13: 9781108837019
  • Hardback
  • Cena: 104,13 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 354 pages, height x width x depth: 250x175x21 mm, weight: 770 g, Worked examples or Exercises
  • Izdošanas datums: 17-Nov-2022
  • Izdevniecība: Cambridge University Press
  • ISBN-10: 1108837018
  • ISBN-13: 9781108837019
Build and operate multi-GNSS and multi-frequency receivers with state-of-the-art techniques using this up-to-date, complete and easy-to-follow text. Including new signals (BOC) and supported by MATLAB© code and digital samples, this practical book is perfect for students and professionals interested in navigation.

Build and operate multi-GNSS and multi-frequency receivers with state-of-the-art techniques using this up-to-date, thorough, and easy-to-follow text. Covering both theory and practise, and complemented by MATLAB© code and digital samples with which to test it, this package is a powerful learning tool for students, engineers, and researchers everywhere. Suggestions of hardware equipment allow you to get to work straight away and to create your own samples. Concisely but clearly explaining all the fundamental concepts in one place, this is also a perfect resource for readers seeking an introduction to the topic.

Papildus informācija

Build and operate multi-GNSS and multi-frequency receivers with state-of-the-art techniques using this easy-to-follow reference.
List of Contributors
xii
Foreword xiii
Dennis ML Akos
Todd Walter
Preface xv
List of Abbreviations
xxi
Main Constants xxviii
1 GNSS Signals and Receivers
1(107)
Jose A. Lopez-Salcedo
Ignacio Fernandez-Hernandez
M. Zahidul H. Bhuiyan
Elena Simona Lohan
Kai Borre
1.1 Introduction
1(1)
1.2 Overview of GNSS Signals
1(3)
1.3 Structure of GNSS Signals
4(20)
1.3.1 Signal Modulation
4(10)
1.3.2 Spreading Codes
14(4)
1.3.3 Power Spectral Density
18(5)
1.3.4 BOC Modulation
23(1)
1.4 GNSS Signal Propagation, Reception and Conditioning
24(14)
1.4.1 Signal Propagation, Link Budget and Received Signal Strength
24(5)
1.4.2 Received Signal Model
29(2)
1.4.3 Received Signal Conditioning
31(6)
1.4.4 Discrete-Time Received Signal Model
37(1)
1.5 Receiver Architecture
38(1)
1.6 Acquisition
39(24)
1.6.1 Correlation of the Received Signal with the Local Replica
41(11)
1.6.2 Signal Detection
52(5)
1.6.3 Time-Frequency Search
57(6)
1.7 Tracking
63(13)
1.7.1 Carrier Tracking
63(6)
1.7.2 Code Tracking
69(6)
1.7.3 GW0 Estimation
75(1)
1.8 Navigation Message
76(9)
1.8.1 Synchronization to the Signal
76(1)
1.8.2 Channel Encoding and Decoding
77(2)
1.8.3 Message Parameters
79(6)
1.9 Pseudorange Errors
85(6)
1.9.1 Ionospheric Error
86(2)
1.9.2 Tropospheric Error
88(1)
1.9.3 Multipath
89(1)
1.9.4 Interference
89(1)
1.9.5 Receiver Noise
90(1)
1.9.6 Error Budgets
90(1)
1.10 Computation of Position and Time
91(17)
1.10.1 Linearization
91(2)
1.10.2 Least Squares and Weighted Least Squares
93(1)
1.10.3 Coordinates and Reference Frames
94(2)
1.10.4 Dilution of Precision, Measurement Residuals and Position Accuracy
96(4)
1.10.5 Other Practical Aspects
100(8)
2 GPS L1C/A Receiver Processing
108(18)
Kai Borre
M. Zahidul H. Bhuiyan
Stefan Soderholm
Heidi Kuusniemi
Ignacio Fernandez-Hernandez
Jose A. Lopez-Salcedo
2.1 Introduction
108(1)
2.2 GPS LI C/A Signal Characteristics
109(4)
2.2.1 Signal Structure
109(2)
2.2.2 Spreading Code
111(1)
2.2.3 Power Spectral Density
112(1)
2.3 Acquisition
113(3)
2.4 Tracking
116(3)
2.5 Computation of Position and Time
119(2)
2.6 Front End and Other Practical Information
121(5)
2.6.1 Front End
121(2)
2.6.2 Data Collection
123(1)
2.6.3 MATLAB Configuration and Functions
123(3)
3 GL0NASSL10F Receiver Processing
126(14)
M. Zahidul H. Bhuiyan
Salomon Honkala
Stefan Soderholm
Heidi Kuusniemi
3.1 Introduction
126(1)
3.2 GLONASS L1 OF Signal Characteristics
127(3)
3.2.1 Signal Structure
127(1)
3.2.2 Spreading Code
128(1)
3.2.3 Comparison with GPS
129(1)
3.3 Acquisition
130(2)
3.4 Tracking
132(3)
3.5 Computation of Position and Time
135(2)
3.6 Front End and Other Practical Information
137(3)
3.6.1 Front End
137(1)
3.6.2 Data Collection
137(1)
3.6.3 MATLAB Configuration and Functions
138(2)
4 Galileo E1 Receiver Processing
140(13)
M. Zahidul H. Bhuiyan
Stefan Soderholm
Giorgia Ferrara
Martti Kirkko-Jaakkola
Heidi Kuusniemi
Jose A. Lopez-Salcedo
Ignacio Fernandez-Hernandez
4.1 Introduction
140(1)
4.2 Galileo El Signal Characteristics
141(2)
4.2.1 Signal Structure
141(1)
4.2.2 Comparison with GPS LI C/A
142(1)
4.3 Acquisition
143(2)
4.4 Tracking
145(1)
4.5 Computation of Position and Time
146(3)
4.6 Galileo El Additional Features
149(1)
4.6.1 Galileo Open Service Navigation Message Authentication (OSNMA)
149(1)
4.6.2 Galileo I/NAV Improvements
149(1)
4.7 Front End and Other Practical Information
150(3)
4.7.1 Front End
150(1)
4.7.2 Data Collection
150(1)
4.7.3 MATLAB Configuration and Functions
150(3)
5 BeiDou B1I Receiver Processing
153(11)
M. Zahidul
H. Bhuiyan
Stefan Soderholm
Sarang Thombre
Heidi Kuusniemi
5.1 Introduction
153(1)
5.2 BeiDou BII Signal Characteristics
153(2)
5.2.1 Signal Structure
154(1)
5.2.2 Comparison with GPS LI C/A
154(1)
5.3 Acquisition
155(1)
5.4 Tracking
156(3)
5.5 Computation of Position and Time
159(2)
5.6 Front End and Other Practical Information
161(3)
5.6.1 Front End
161(1)
5.6.2 Data Collection
161(1)
5.6.3 MATLAB Configuration and Functions
162(2)
6 NavIC L5 Receiver Processing
164(10)
Sarang Thombre
M. Zahidul H. Bhuiyan
Stefan Soderholm
Heidi Kuusniemi
6.1 Introduction
164(1)
6.2 NavIC Signal Characteristics
165(1)
6.3 Acquisition
165(3)
6.4 Tracking
168(1)
6.5 Computation of Position and Time
169(2)
6.6 Front End and Other Practical Information
171(3)
6.6.1 Front End
171(1)
6.6.2 Data Collection
172(1)
6.6.3 MATLAB Configuration and Functions
173(1)
7 A Multi-GNSS Software Receiver
174(15)
Stefan Soderholm
M. Zahidul H. Bhuiyan
Giorgia Ferrara
Sarang Thombre
Heidi Kuusniemi
7.1 Introduction
174(1)
7.2 Multi-GNSS Signal Acquisition and Tracking
175(5)
7.2.1 C/N0 Computation
178(1)
7.2.2 Multi-correlator Tracking
179(1)
7.2.3 Data Decoding
179(1)
7.3 Computation of Multi constellation Position and Time
180(6)
7.3.1 Position Solution
181(1)
7.3.2 Time Solution
182(2)
7.3.3 Velocity Solution
184(1)
7.3.4 Experimental Results
184(2)
7.4 Front End and Other Practical Information
186(3)
7.4.1 Front End
186(1)
7.4.2 Data Collection
187(1)
7.4.3 MATLAB Configuration and Functions
187(2)
8 A Dual-Frequency Software Receiver
189(21)
Padma Bolla
Kai Borre
8.1 Introduction
189(1)
8.2 GPS L5 Signal Characteristics
190(1)
8.2.1 Introduction
190(1)
8.2.2 Signal Structure
191(1)
8.3 Architecture of a Dual-Frequency Receiver
191(1)
8.4 Acquisition
192(6)
8.4.1 Single-versus Dual-Channel GPS L5 Acquisition
193(3)
8.4.2 GPS Ll-Aided GPS L5 Acquisition
196(2)
8.5 Tracking
198(1)
8.6 Generation of GPS Observations
199(2)
8.6.1 Carrier-Phase Observation
200(1)
8.6.2 Doppler Observation
201(1)
8.7 Dual-Frequency Receiver Observations
201(5)
8.7.1 Dual-Frequency Pseudorange Equations
203(1)
8.7.2 Dual-Frequency Carrier-Phase Equations
204(2)
8.8 Computation of Position and Time
206(1)
8.9 Front End and Other Practical Information
207(3)
8.9.1 Front End
207(1)
8.9.2 Data Collection
208(1)
8.9.3 MATLAB Configuration and Functions
208(2)
9 Snapshot Receivers
210(35)
Ignacio Fernandez-Hernandez
Jose A. Lopez-Salcedo
Gonzalo Seco-Granados
9.1 Introduction
210(1)
9.2 Snapshot Signal Processing
211(20)
9.2.1 Coherent Integration
212(1)
9.2.2 Noncoherent Integration
213(2)
9.2.3 Block-wise Sampling Correction
215(1)
9.2.4 Signal Detection
216(3)
9.2.5 Interpolation of the Correlation Peak
219(1)
9.2.6 Snapshot-Based C/N0 Estimation
220(2)
9.2.7 Low-Complexity Multipath Detection
222(2)
9.2.8 Double-FFT Implementation
224(3)
9.2.9 Single FFT Implementation
227(4)
9.3 Snapshot Positioning
231(9)
9.3.1 Instantaneous Doppler Positioning
233(4)
9.3.2 Coarse-Time Pseudorange Positioning
237(3)
9.4 Front End and Other Practical Information
240(5)
9.4.1 Front End
240(1)
9.4.2 Data Collection
240(1)
9.4.3 MATLAB Configuration and Functions
240(5)
10 Acquisition and Tracking of B0C Signals
245(41)
Elena Simona Lohan
10.1 Introduction
245(1)
10.2 The Ambiguity Challenge in BOC-Modulated Signals
245(2)
10.3 Unambiguous Acquisition
247(8)
10.3.1 Wide Main Lobe Correlation Approach
248(4)
10.3.2 Narrow Main Lobe Correlation Approaches
252(3)
10.4 Ambiguous or Conventional Tracking Methods
255(8)
10.4.1 Code Tracking
255(2)
10.4.2 Maximum Likelihood or Multi-correlator Approaches
257(2)
10.4.3 Slope-Based Approaches
259(1)
10.4.4 Subspace-Based Algorithms
260(1)
10.4.5 Deconvolution Approaches
260(1)
10.4.6 Non-linear Transform-Based Approaches
261(1)
10.4.7 Combined Approaches
261(1)
10.4.8 Multipath Mitigation and Code Tracking
261(2)
10.5 Unambiguous Code Tracking
263(3)
10.5.1 Wide Main-Lobe Correlation Approaches
263(1)
10.5.2 Narrow Main-Lobe Correlation Approaches
263(3)
10.6 Conclusions and Look Forward
266(1)
Appendix: General Formulation of BOC Signals
267(19)
10.A Introduction to BOC Signals
267(1)
10.B Complex Double BOC Modulation
268(2)
10.B.1 Autocorrelation of CDBOC Signals
270(3)
10.B.2 Power Spectral Density of CDBOC Signals
273(1)
10.C Multiplexed BOC Modulation
274(4)
10.C.1 Autocorrelation of MBOC Signals
278(1)
10.C.2 Power Spectral Density of MBOC Signals
278(1)
10.D Alternate BOC Modulation
279(1)
10.D.1 Autocorrelation of AltBOC Signals
279(1)
10.D.2 Power Spectral Density of AltBOC Signals
280(6)
11 SDR Front Ends, Platforms and Setup
286(16)
Jose A. Lopez-Salcedo
Gonzalo Seco-Granados
Ignacio Fernandez-Hernandez
11.1 Introduction
286(1)
11.2 SDR Front Ends
286(5)
11.2.1 Main Features of the SDR Front Ends Used in This Book
286(1)
11.2.2 Alternative SDR Front Ends in the Market
287(4)
11.3 SDR Platforms, Architectures and Applications
291(6)
11.4 Experimentation Setup to Gather GNSS Samples
297(5)
12 SDR MATLAB Package
302(18)
M. Zahidul H. Bhuiyan
Stefan Soderholm
Giorgia Ferrara
Sarang Thombre
Heidi Kuusniemi
Ignacio Fernandez-Hernandez
Padma Bolla
Joso A. Lopez-Salcedo
Elena Simona Lohan
Kai Borre
12.1 Introduction
302(1)
12.2 Multi-GNSS SDR Receiver (FGI-GSRx)
302(8)
12.2.1 Download and Installation
302(1)
12.2.2 Execution
303(4)
12.2.3 Data Management
307(2)
12.2.4 Parameter System
309(1)
12.3 Dual-Frequency GNSS Software Receiver (DF-GSRx)
310(4)
12.3.1 General Overview
310(2)
12.3.2 Main function
312(1)
12.3.3 Acquisition Block
313(1)
12.3.4 Tracking Block
313(1)
12.3.5 Data-Decoding Block
313(1)
12.3.6 Navigation Block
313(1)
12.3.7 Part-2
314(1)
12.4 Snapshot GPS L1 C/A Receiver
314(2)
12.4.1 Snapshot Receiver Overview
314(1)
12.4.2 Installation
314(1)
12.4.3 Configuration
314(1)
12.4.4 Execution
315(1)
12.4.5 Acquisition
315(1)
12.4.6 Navigation Solution
315(1)
12.5 Other MATLAB Functions
316(1)
12.6 Sample Files
316(1)
12.7 GNSS SDR Metadata Standard
316(4)
Index 320
Kai Borre was professor of geodesy and founder of the Danish GPS Center at Aalborg University. He was the co-author of several popular books and creator of widely used software within his field. Kai Borre received The Order of Dannebrog and held an honorary Doctorate at Vilnius Technical University. Ignacio Fernįndez-Hernįndez works at the European Commission, DG DEFIS, as responsible for Galileo authentication and high accuracy services. He is also an adjunct professor at KU Leuven, where he teaches satellite navigation, and has been a visiting scholar at Stanford University. He is the recipient of the Institute of Navigation's 2021 Thurlow Award. José A. López-Salcedo is a professor of electrical engineering at Universitat Autņnoma de Barcelona. He has been the technical lead for more than 20 research projects on signal processing techniques for GNSS receivers and a visiting researcher at the University of Illinois Urbana-Champaign, the University of California, Irvine and the European Commission. M. Zahidul H. Bhuiyan is a research professor at the Department of Navigation and Positioning at the Finnish Geospatial Research Institute (FGI). He has more than 15 years of experience in the GNSS field with expertise in multi-frequency multi-GNSS receiver development. He is actively involved in teaching GNSS related courses in Finnish universities and other international training schools. He has also been working as a technical expert for the EU Agency for the Space Programme (EUSPA) in H2020 project reviewing and proposal evaluation since 2017.