Atjaunināt sīkdatņu piekrišanu

E-grāmata: GNSS Systems and Engineering: The Chinese Beidou Navigation and Position Location Satellite

  • Formāts: PDF+DRM
  • Izdošanas datums: 22-Dec-2017
  • Izdevniecība: John Wiley & Sons Inc
  • Valoda: eng
  • ISBN-13: 9781118897058
  • Formāts - PDF+DRM
  • Cena: 143,89 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: PDF+DRM
  • Izdošanas datums: 22-Dec-2017
  • Izdevniecība: John Wiley & Sons Inc
  • Valoda: eng
  • ISBN-13: 9781118897058

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Comprehensive guide to the fundamentals and advanced engineering of the Beidou satellite system

• The first book specifically describing the Chinese Beidou timing/navigation system – an increasingly important contributor to the GNSS
• Introducing the ‘user location information sharing’ demands, technologies and development trends
• Highlights the technical features and broad application prospects of navigation, positioning and short message communication of the Beidou satellite system
• Enhances understanding of the fundamentals and theories of radio navigation and positioning satellite systems
• Offers guidelines as to how to implement their design and construction
• A comprehensive reference on the subject for those who are doing scientific or engineering research in this area
Preface xiii
1 Overview 1(12)
1.1 Origin of GLONASS
2(1)
1.1.1 Stage 1: Satellite Radio Positioning
2(1)
1.1.2 Stage 2: RNSS
2(1)
1.1.3 Stage 3: Satellite Navigation Positioning Reporting
3(1)
1.2 Development and Future Plans for the GPS System
3(2)
1.3 Development and Future Plans for GLONASS
5(3)
1.4 Development and Future of the Chinese Navigation Satellite System
8(2)
1.5 Galileo Navigation Satellite System
10(1)
1.6 Indian Navigation Satellite System
11(1)
1.7 Japanese Regional Navigation Satellite System
12(1)
2 Concept and Application Prospects of Satellite Positioning Reporting Engineering 13(10)
2.1 Satellite Positioning Reporting Service
13(1)
2.2 Type of Service and Frequency Assignment
13(4)
2.3 System Interference Analysis and Strategy
17(1)
2.3.1 L Frequency Band Interference Analysis
17(1)
2.3.2 S Frequency Band Interference Analysis
17(1)
2.4 Service Optimization of Satellite Positioning Reporting Engineering
18(2)
2.4.1 Integration of RDSS with RNSS and MSS
18(1)
2.4.2 Integration of RDSS and WAAS
19(1)
2.4.3 Integration of RDSS and TDRSS
19(1)
2.5 RDSS Application
20(3)
2.5.1 Aviation Application
20(1)
2.5.2 Aerospace Application
21(1)
2.5.3 Navigation Application
22(1)
2.5.4 Land Transportation Application
22(1)
2.5.5 Hazardous and Difficult Site Monitoring
22(1)
3 Principles of Satellite Positioning Reporting 23(10)
3.1 Theory of Positioning Reporting
23(4)
3.2 Main Factors Affecting Positioning Accuracy
27(1)
3.3 Accuracy of MCC Time Delay Measurement
27(1)
3.4 Space Propagation Time Delay Error
28(1)
3.5 Geometric Figure and Positioning Accuracy
29(1)
3.6 User Elevation and Positioning Accuracy
30(3)
4 Engineering Design of the Satellite Positioning Reporting System 33(24)
4.1 System Composition
33(1)
4.2 System Function Design
33(4)
4.2.1 Outbound Function Design
34(2)
4.2.2 Inbound Function Design
36(1)
4.2.3 System Processing Capability
36(1)
4.3 System Technical Index Design
37(4)
4.3.1 System Coverage Area
37(1)
4.3.2 System Capacity Design
37(3)
4.3.2.1 System Outbound Capacity Design
38(1)
4.3.2.2 System Inbound Capacity Design
38(2)
4.3.3 System Positioning Accuracy Design
40(1)
4.4 Signal System Design
41(2)
4.4.1 Outbound Signal Design
41(2)
4.4.2 Inbound Signal Design
43(1)
4.5 System Frequency Design
43(2)
4.5.1 Influence of the Frequency Stability of a Transponder on System Performance
44(1)
4.5.2 Satellite-Ground Frequency Adjustment
44(1)
4.6 Engineering Design of Positioning Reporting Satellites
45(3)
4.6.1 Excellent Capability of Beam Coverage
45(1)
4.6.2 Design of EIRP and G/T Value
46(2)
4.7 MCC Engineering Design
48(6)
4.7.1 MCC Outbound Link Design
49(1)
4.7.2 MCC Inbound Link Design
49(1)
4.7.3 Satellite Orbit Determination and Prediction
50(1)
4.7.4 Dual-Satellite Wide Area Differential Processing
51(2)
4.7.5 MCC Service Processing
53(1)
4.8 RDSS Application Terminal Design
54(3)
4.8.1 Single Address User Receiver
54(1)
4.8.2 Multi-Address User Receiver
55(1)
4.8.3 RDSS Double-Model User Receiver
55(2)
5 Comprehensive Theory of RDSS and Engineering Design 57(54)
5.1 Definition of CRDSS
57(1)
5.2 Theory of CRDSS
58(7)
5.2.1 Navigation Position Reporting Service
58(1)
5.2.2 RNSS Continuous Navigation Service
59(1)
5.2.3 Mission Comparison between CRDSS Service and RNSS Service
60(1)
5.2.4 CRDSS System Position Reporting Capability Analysis
61(1)
5.2.5 CRDSS Global Coverage Analysis
62(2)
5.2.6 Realization of the CRDSS Personalized Service
64(1)
5.3 CRDSS system Engineering Design
65(17)
5.3.1 Application Object and Design Principle
65(1)
5.3.1.1 Application Objects
65(1)
5.3.1.2 Design Principle
65(1)
5.3.2 Constellation Selection and Coverage Area Design
66(4)
5.3.2.1 Constellation Selection
66(1)
5.3.2.2 CAT-I Integrity Broadcasting Constellation Design
67(1)
5.3.2.3 Air Traffic Control Coverage Area Design in the Region of China
68(1)
5.3.2.4 CRDSS Coverage Area Design
68(2)
5.3.3 Precision Analysis and Index Distribution
70(8)
5.3.3.1 Total Precision Requirement
70(1)
5.3.3.2 Observation Equipment Error Analysis
71(1)
5.3.3.3 Point Positioning and Single Reference Station Differential Positioning Error Analysis
71(1)
5.3.3.4 Base Network Pseudorange Differential Positioning Accuracy Analysis
72(2)
5.3.3.5 Single Reference Station Carrier Phase Differential Positioning Error Analysis
74(3)
5.3.3.6 Narrow Correlation Pseudorange Differential Positioning Accuracy Analysis
77(1)
5.3.4 Selection of Precision Positioning Scheme
78(1)
5.3.5 Guidance Service
78(1)
5.3.6 Two-way Data Transmission Link Design of the S/L- Frequency Band
79(3)
5.3.6.1 Design Condition and Design Item Parameters
79(1)
5.3.6.2 Estimation of Outbound Link Level and Capacity
79(1)
5.3.6.3 Estimation of Inbound Link Level and Capacity
80(2)
5.4 CRDSS Navigation Positioning Satellite
82(6)
5.4.1 Mission and Functional Parameter
82(1)
5.4.2 RNSS Satellite
83(1)
5.4.3 CRDSS Satellite
83(5)
5.4.3.1 Regional CRDSS Satellite
83(4)
5.4.3.2 Global CRDSS Satellite
87(1)
5.5 CRDSS Ground System
88(11)
5.5.1 Function and Composition of Ground System
88(1)
5.5.2 Measurement and Control Center (MCC)
89(3)
5.5.2.1 CRDSS Service User Distance Measurement and Positioning Equation
89(1)
5.5.2.2 Distance Measurement System Scheme
90(2)
5.5.3 GNSS Reference Station System
92(1)
5.5.3.1 Local Class I Precision Approach Reference Station System
93(1)
5.5.3.2 The 1.0 m Level Reference System
93(1)
5.5.4 Multiple System Satellite Clock Error Determination
93(2)
5.5.4.1 Compass Satellite Clock Error Determination
94(1)
5.5.5 Multiple System Satellite Precise Orbit Determination and Application
95(1)
5.5.6 Formation and Application of Ionosphere Correction Parameter
96(1)
5.5.7 GNSS High-Accuracy Real-Time Dynamic Positioning
97(1)
5.5.8 CRDSS High Accuracy Quasi Real-Time Positioning
98(1)
5.6 Typical Application Scheme
99(12)
5.6.1 High Accuracy Pseudorange Double Difference Application Scheme
99(7)
5.6.1.1 Pseudorange Double Difference RDSS Positioning Principle
99(2)
5.6.1.2 Pseudorange Double Difference RDSS Positioning Distance and Observation Parameters Correction and Precision Analysis
101(2)
5.6.1.3 L Frequency Band Double Difference Distance Correction
103(1)
5.6.1.4 Pseudorange Double Difference RDSS Positioning Accuracy Estimation
104(1)
5.6.1.5 MCC Total Distance Measurement Scheme
105(1)
5.6.2 Design Scheme of the Double Module User Terminal
106(5)
6 Anti-Interference and Low Exposure Technology of the Satellite Positioning User 111(6)
6.1 Self-Adaptive Spatial Filtering Principle
111(1)
6.2 Basic Algorithm of Self-Adaptive Filtering
112(3)
6.3 Self-Adaptive Nulling Antenna Engineering Design
115(1)
6.4 Low Exposure Transmission Array Antenna Design
115(2)
7 Concept of Satellite Navigation and the Principle of Positioning and Velocity Measurement 117(16)
7.1 Concept of Satellite Navigation
117(2)
7.2 Satellite Navigation Principle
119(6)
7.2.1 Solutions of the Navigation Mission
121(1)
7.2.2 Concept and Definition of the Pseudorange
122(1)
7.2.3 Navigation Positioning Equation
123(2)
7.3 Geometric Precision Factor
125(2)
7.4 Satellite Navigation Velocity Measurement Principle
127(2)
7.5 Positioning Velocity Measurement Precision
129(1)
7.5.1 Positioning Accuracy of Global System
130(1)
7.5.2 Global and Regional Augmentation System Positioning Accuracy
130(1)
7.5.3 Global, Regional, and Local Augmentation Positioning Accuracy
130(1)
7.6 Distance Difference and Radial Velocity Difference
130(1)
7.7 Combined Method
131(1)
7.8 Carrier Phase Difference Method
131(2)
8 Performance Demand and General Design of RNSS 133(12)
8.1 Essential Performance of RNSS
133(8)
8.1.1 Value-Added Performance of RNSS
139(1)
8.1.2 High-Dimensional Performance of RNSS
140(1)
8.2 Mission and Procedure of the General Design
141(2)
8.3 Mission and Procedure of Engineering Design
143(2)
9 System Design of Satellite Navigation 145(48)
9.1 System Design Principle and Content
145(3)
9.1.1 System Design Principle
146(1)
9.1.1.1 Adhering to the Long-Term Duty and Continuity
146(1)
9.1.1.2 Adhering to Coordination and Integration
146(1)
9.1.1.3 Laying Emphasis on Economy and Technical Feasibility
146(1)
9.1.1.4 Security and Competitiveness
147(1)
9.1.2 System Design Content
147(1)
9.2 Service Mode and Content
148(2)
9.3 Satellite Orbit and Constellation Selection
150(10)
9.3.1 Orbital Altitude
150(2)
9.3.2 Track of Sub-Satellite Point and its Effect on Measurement and Control Plan
152(2)
9.3.3 Orbital Plane and the Number of Constellation Satellites
154(4)
9.3.4 Selection of Types of Satellite Orbits
158(2)
9.4 Signal Frequency and Modulation Coding Mode
160(22)
9.4.1 Selection Principle of Navigation Signal Frequency
160(1)
9.4.2 Navigation Frequency Recommended by the ITU
160(4)
9.4.3 Signal Frequency and Bandwidth Selection
164(2)
9.4.4 Satellite Multiple Access Identification and Ranging Code Design
166(7)
9.4.5 Navigation Signal Modulation Methods
173(6)
9.4.5.1 Binary Offset Carrier (BOC) Modulation
175(4)
9.4.6 Selected Error Correction Coding of Navigation Message
179(2)
9.4.7 Advocates of the Compass Operators Toward Satellite Navigation Frequency Compatibility and Compass Signal Structure
181(1)
9.5 Time Standard and Timing Pattern of Satellite Navigation
182(4)
9.5.1 Satellite Navigation Time System (SATNAVT)
183(1)
9.5.2 Universal Time (UT) (Greenwich Mean Solar Time)
183(1)
9.5.3 Universal Time Coordinated (UTC)
183(1)
9.5.4 Julian Period
184(1)
9.5.5 Timing Method of Satellite Navigation Time (SATNAVT)
184(2)
9.6 Navigation Satellite Trajectories and Ephemeris Expressions
186(7)
10 Design of the Satellite Navigation Operation Control System 193(32)
10.1 Mission and Composition of the Satellite Navigation Operation Control System
193(1)
10.2 Satellite Time Synchronization and Timing
194(4)
10.2.1 Method of Satellite-Ground Time Synchronization
194(1)
10.2.1.1 Method of Satellite-Ground Pseudorange Time
194(1)
10.2.2 Method of Inter-Station Time Synchronization
195(2)
10.2.2.1 Method of Two-Way Satellite Time Transfer
196(1)
10.2.2.2 Method of Two-Way Satellite Common View
196(1)
10.2.2.3 Method of Two-Way GEO Satellite Common View
196(1)
10.2.3 User Timing Service
197(1)
10.2.3.1 Prediction Model for the Satellite Clock Error
197(1)
10.3 Correction of Navigation Signal Spatial Propagation Delay
198(5)
10.3.1 Ionosphere Model Correction for Single Band Users
200(3)
10.3.1.1 Ionosphere Correction in Regional Grid
202(1)
10.4 Determination of Precise Orbit and Satellite Clock Error
203(3)
10.4.1 Correction of Satellite Orbit
204(1)
10.4.2 Accuracy Estimation
205(1)
10.5 Integrity Monitoring and Prediction
206(3)
10.5.1 Satellite-Ground Two-Way Pseudorange Time Synchronization Separated Satellite Integrity
206(1)
10.5.2 Integrity of DLL Related Monitoring Satellite Payload
207(2)
10.5.2.1 How to Conduct the Distortion Determination of Satellite Signals
207(2)
10.6 Integration of Operation Control System
209(2)
10.6.1 Combination of RNSS and RDSS to Realize Integration of Three Functions of Navigation, Communication, and Identification
209(1)
10.6.1.1 Basic Principles and Methods of Integration
209(1)
10.6.1.2 Performance Features of RNSS and RDSS Integration
210(1)
10.6.2 Realization of Integration with a Foreign System by Multiple-System Information Fusion
210(1)
10.7 Operation and Control of Multi-System Joint Wide Area Augmentation System
211(14)
10.7.1 System Composition
212(1)
10.7.2 System Working Principle
213(3)
10.7.3 GEOS Satellite Correction Parameters and Integrity Broadcast Message
216(1)
10.7.4 Satellite Integrity Monitoring
217(1)
10.7.5 Composition of the Monitoring Station
218(2)
10.7.6 Master Control Station Joint Wide Area Differential Software Function
220(5)
11 Navigation Satellites and Navigation Payload 225(26)
11.1 Satellite and Navigation Payload History
225(4)
11.2 Navigation Satellite Platform
229(3)
11.3 Navigation Payload Requirements
232(1)
11.4 GPS Satellite Navigation Payload
232(6)
11.4.1 Atomic Frequency Standard
233(1)
11.4.2 On-Board Processing
233(1)
11.4.3 Wave Band System
234(1)
11.4.4 Horizontal Link
235(1)
11.4.5 Autonomous Navigation
235(3)
11.5 GLONASS Navigation Satellite and Navigation Payload
238(4)
11.5.1 Functions of the GLONASS Navigation Satellite
238(1)
11.5.2 Satellite Composition
239(3)
11.5.2.1 Navigation Transmitter
239(1)
11.5.2.2 Time System
240(1)
11.5.2.3 Control Combination System
241(1)
11.5.2.4 Orientation and Stable System as well as Its Auxiliary Equipment
242(1)
11.6 Galileo Navigation Satellite and Alternative Schemes of Navigation Payload
242(6)
11.6.1 Satellite Definition
242(2)
11.6.2 MEO Satellite Configuration
244(2)
11.6.3 Payload of MEO Satellite Navigation
246(1)
11.6.4 GEO Satellite and Navigation Load
247(1)
11.7 Compass Satellite Navigation and Payload
248(1)
11.8 Comparison and Development Direction of Navigation Payload
249(2)
12 Satellite Navigation User Receiver 251(20)
12.1 Relative Motion Characteristics Between the User and the Satellite
251(5)
12.2 Pseudorange Measurement and Error Analysis
256(5)
12.2.1 Types and Characteristics of Pseudorange Error
257(1)
12.2.2 Dynamic Stress Error
258(1)
12.2.3 Pseudorange Random Error
258(2)
12.2.4 Pseudorange Smoothing Technology
260(1)
12.3 Positioning and Filtering Processing
261(10)
12.3.1 alpha/beta Tracker
261(4)
12.3.2 Kalman Filter
265(6)
References 271(2)
Further Reading 273(2)
Index 275
Shusen Tan, Senior Engineer, Beijing Satellite Navigation Center, Beijing, China.  Tan has been working in this area for over 20 years and his areas of expertise include the Construction and Application of China Beidou Radio Navigation and Positioning Satellite System, and Construction and Application of Global Navigation Satellite System (GNSS). In 2010 he was awarded with the Significant Contributions Person Award in Promoting the Development of China Satellite Navigation and Positioning Industry from Global Positioning System Applications Society. He is the Editor of three books (in Chinese) and author of 50 peer-reviewed journal and transaction full papers.