Foreword |
|
xiii | |
|
About this book |
|
xix | |
Acknowledgments |
|
xx | |
List of abbreviations and acronyms |
|
xxi | |
List of definitions |
|
xxv | |
Part I GNSS: orbits, signals, and methods |
|
|
1 GNSS ground and space segments |
|
|
3 | (36) |
|
1.1 Ground segment and coordinate reference frames |
|
|
3 | (7) |
|
1.2 Space segment and time references |
|
|
10 | (3) |
|
1.2.1 GPS time and calendar time |
|
|
10 | (1) |
|
1.2.2 Other GNSS time scales |
|
|
11 | (1) |
|
1.2.3 Onboard clock error |
|
|
11 | (2) |
|
1.3 Satellite motion description using Keplerian parameters |
|
|
13 | (4) |
|
1.4 Algorithm for satellite position calculation using standard Keplerian parameters |
|
|
17 | (3) |
|
1.5 Theoretical background for the spherical harmonics of the Earth's geopotential |
|
|
20 | (2) |
|
1.6 Algorithm for transformation of GLONASS almanac parameters into standard Keplerian parameters |
|
|
22 | (4) |
|
1.7 Medium Earth GNSS orbits |
|
|
26 | (3) |
|
|
29 | (3) |
|
|
29 | (1) |
|
|
30 | (2) |
|
1.9 Algorithm for GPS, Galileo, and BeiDou for satellite position calculation using ephemeris in the form of osculating elements |
|
|
32 | (3) |
|
1.10 Algorithm for GLONASS satellite position calculation using ephemerides in the form of Cartesian vectors |
|
|
35 | (1) |
|
1.11 Algorithm for GLONASS satellite position calculation accounting for lunar and solar gravitational perturbations |
|
|
36 | (1) |
|
|
37 | (2) |
|
2 GPS, GLONASS, Galileo, and BeiDou signals |
|
|
39 | (49) |
|
|
39 | (19) |
|
2.1.1 GNSS signals in general |
|
|
39 | (10) |
|
|
39 | (3) |
|
2.1.1.2 GNSS signal structure |
|
|
42 | (1) |
|
2.1.1.3 GNSS spread codes: past, present, and future |
|
|
42 | (1) |
|
2.1.1.3.1 Shift register and memory codes |
|
|
42 | (1) |
|
2.1.1.3.2 Strange attractor codes |
|
|
45 | (1) |
|
|
46 | (1) |
|
|
47 | (1) |
|
|
48 | (1) |
|
|
49 | (1) |
|
|
49 | (4) |
|
2.1.2.1 GPS L1 C/A signal |
|
|
49 | (2) |
|
|
51 | (2) |
|
|
53 | (3) |
|
|
56 | (1) |
|
|
57 | (1) |
|
2.2 GNSS signal propagation error models |
|
|
58 | (14) |
|
2.2.1 Effects of signal propagation through the atmosphere on GNSS |
|
|
58 | (2) |
|
2.2.2 Algorithms for tropospheric delay calculation |
|
|
60 | (2) |
|
2.2.2.1 Black and Eisner model |
|
|
60 | (1) |
|
2.2.2.2 Saastamoinen tropospheric delay model |
|
|
61 | (1) |
|
2.2.2.3 Niell mapping function |
|
|
61 | (1) |
|
2.2.3 Algorithms for ionospheric delay calculation |
|
|
62 | (7) |
|
2.2.3.1 Single-layer ionosphere model |
|
|
63 | (2) |
|
2.2.3.2 Ionospheric error compensation in GPS and BeiDou receivers |
|
|
65 | (2) |
|
2.2.3.3 Ionospheric error compensation in GLONASS receivers |
|
|
67 | (1) |
|
2.2.3.4 Ionospheric error compensation in Galileo receivers |
|
|
67 | (1) |
|
2.2.3.5 ionospheric error corrections from GEO/HEO satellites |
|
|
68 | (1) |
|
2.2.4 Ionospheric error compensation in multi-frequency GNSS receivers |
|
|
69 | (3) |
|
|
72 | (10) |
|
2.3.1 GPS and BeiDou navigation messages |
|
|
72 | (1) |
|
2.3.2 Galileo navigation message |
|
|
73 | (2) |
|
2.3.3 Algorithm for constructing GPS/BeiDou/Galileo pseudorange measurements |
|
|
75 | (2) |
|
|
75 | (1) |
|
|
75 | (1) |
|
2.3.3.3 Galileo time mark |
|
|
76 | (1) |
|
2.3.3.4 Pseudorange construction algorithm |
|
|
76 | (1) |
|
2.3.4 GLONASS navigation message contents and structure |
|
|
77 | (3) |
|
2.3.5 Subframe of a GLONASS navigation message |
|
|
80 | (2) |
|
2.3.5.1 Algorithm for reading GLONASS subframe |
|
|
80 | (1) |
|
2.3.5.2 Subframes containing immediate information |
|
|
81 | (1) |
|
|
81 | (1) |
|
|
81 | (1) |
|
|
81 | (1) |
|
|
82 | (1) |
|
|
82 | (1) |
|
2.4 What's in a sat's name? |
|
|
82 | (4) |
|
|
84 | (1) |
|
|
84 | (1) |
|
|
84 | (1) |
|
|
85 | (1) |
|
|
86 | (2) |
|
3 Standalone positioning with GNSS |
|
|
88 | (22) |
|
3.1 Application of pseudorange observables |
|
|
88 | (10) |
|
3.1.1 Code phase measurements |
|
|
88 | (2) |
|
3.1.2 Carrier phase measurements |
|
|
90 | (1) |
|
3.1.3 Pseudorange equations |
|
|
91 | (2) |
|
3.1.4 Satellite coordinates |
|
|
93 | (2) |
|
3.1.5 Minimum number of satellites for positioning |
|
|
95 | (3) |
|
3.2 Navigation solution algorithms |
|
|
98 | (6) |
|
3.2.1 Least-squares estimation (LSE) solution |
|
|
98 | (3) |
|
3.2.2 Analytical solution |
|
|
101 | (1) |
|
3.2.3 Kalman-filter solution |
|
|
102 | (2) |
|
3.2.4 Brute-force solution |
|
|
104 | (1) |
|
3.3 Multi-system positioning |
|
|
104 | (1) |
|
3.3.1 Generalized equations |
|
|
104 | (1) |
|
3.3.2 Time-shift calculation using navigation message data |
|
|
105 | (1) |
|
3.4 Error budget for GNSS observables |
|
|
105 | (4) |
|
3.4.1 Error budget contents |
|
|
105 | (1) |
|
3.4.2 Geometrical factors |
|
|
106 | (2) |
|
|
108 | (1) |
|
|
109 | (1) |
|
4 Referenced positioning with GNSS |
|
|
110 | (21) |
|
4.1 Requirements for code and carrier differential positioning |
|
|
110 | (2) |
|
4.2 Spatial correlations in error budget |
|
|
112 | (1) |
|
4.2.1 Decorrelation of satellite orbital errors |
|
|
112 | (1) |
|
4.2.2 Decorrelation of tropospheric errors |
|
|
113 | (1) |
|
4.2.3 Decorrelation of ionospheric errors |
|
|
113 | (1) |
|
|
113 | (5) |
|
4.3.1 Single-difference observables |
|
|
113 | (1) |
|
4.3.2 Double-difference observables |
|
|
114 | (2) |
|
4.3.3 GLONASS inter-frequency bias |
|
|
116 | (1) |
|
4.3.4 Triple-difference observables |
|
|
116 | (1) |
|
4.3.5 Double-difference equations for multi-systems |
|
|
117 | (1) |
|
4.4 Real-time kinematic method |
|
|
118 | (8) |
|
4.4.1 Code and carrier phase difference equations |
|
|
118 | (2) |
|
4.4.2 RTK positioning algorithm |
|
|
120 | (3) |
|
|
121 | (1) |
|
|
122 | (1) |
|
|
123 | (1) |
|
|
123 | (8) |
|
4.4.3.1 Network of reference stations |
|
|
123 | (1) |
|
|
124 | (2) |
|
|
126 | (5) |
Part II From conventional to software GNSS receivers and back |
|
|
|
131 | (38) |
|
5.1 GNSS receiver overview |
|
|
131 | (13) |
|
5.1.1 Digest of GNSS receiver operation |
|
|
131 | (4) |
|
5.1.2 Receiver specification |
|
|
135 | (7) |
|
5.1.2.1 Specification parameters |
|
|
135 | (1) |
|
|
135 | (1) |
|
|
137 | (1) |
|
5.1.2.1.3 Systems and frequencies |
|
|
138 | (1) |
|
5.1.2.1.4 Time to first fix |
|
|
138 | (1) |
|
|
139 | (1) |
|
5.1.2.2 Spec specifics for main application fields |
|
|
140 | (1) |
|
5.1.2.2.1 Geodetic applications |
|
|
140 | (1) |
|
5.1.2.2.2 Geophysical applications |
|
|
140 | (1) |
|
5.1.2.2.3 Aviation applications |
|
|
141 | (1) |
|
5.1.2.2.4 Mobile applications |
|
|
141 | (1) |
|
5.1.2.3 Evaluation of parameters |
|
|
142 | (1) |
|
5.1.3 GNSS receiver design |
|
|
142 | (2) |
|
5.1.3.1 Hardware and generic receivers |
|
|
142 | (1) |
|
5.1.3.1.1 Receiver functional model |
|
|
142 | (1) |
|
5.1.3.1.2 Receiver structural model |
|
|
143 | (1) |
|
|
144 | (21) |
|
|
144 | (7) |
|
5.2.1.1 Signal acquisition |
|
|
144 | (4) |
|
5.2.1.2 Massive parallel correlation |
|
|
148 | (1) |
|
5.2.1.3 Coherent signal integration |
|
|
149 | (1) |
|
5.2.1.4 Frequency resolution |
|
|
150 | (1) |
|
5.2.2 Receiver channel functions |
|
|
151 | (20) |
|
5.2.2.1 Tracking loop theory |
|
|
151 | (6) |
|
5.2.2.2 Tracking loop implementation |
|
|
157 | (1) |
|
|
157 | (1) |
|
5.2.2.2.2 Coherent tracking with 20 ms coherency interval |
|
|
159 | (1) |
|
5.2.2.2.3 Coherent tracking with 1 s coherency interval |
|
|
161 | (1) |
|
|
162 | (1) |
|
5.2.2.4 Bit synchronization |
|
|
163 | (1) |
|
|
164 | (1) |
|
|
165 | (2) |
|
|
167 | (2) |
|
6 Receiver implementation on a general processor |
|
|
169 | (21) |
|
6.1 Development of the "software approach" |
|
|
169 | (2) |
|
6.2 Software receiver design |
|
|
171 | (3) |
|
6.2.1 Baseband processor implementation |
|
|
171 | (2) |
|
6.2.2 Acquisition implementation |
|
|
173 | (1) |
|
6.3 Advantages of software receivers |
|
|
174 | (4) |
|
6.3.1 Software receiver advantages for mobile applications |
|
|
174 | (3) |
|
6.3.1.1 Potential reduction of required hardware |
|
|
174 | (1) |
|
|
175 | (1) |
|
|
175 | (1) |
|
6.3.1.4 Reduction of new product development cycle |
|
|
175 | (1) |
|
6.3.1.5 Adaptability to new signals |
|
|
175 | (2) |
|
6.3.1.6 Change of receiver type |
|
|
177 | (1) |
|
6.3.1.7 Third-party product involvement |
|
|
177 | (1) |
|
6.3.2 Software receiver advantages for high-end applications |
|
|
177 | (1) |
|
|
177 | (1) |
|
6.3.2.2 Access to baseband processor |
|
|
177 | (1) |
|
6.3.2.3 RF signal post-processing |
|
|
178 | (1) |
|
6.4 Real-time implementation |
|
|
178 | (7) |
|
|
178 | (2) |
|
6.4.2 Bottlenecks in GNSS signal processing |
|
|
180 | (1) |
|
6.4.3 Algorithmic methods used to speed up processing |
|
|
181 | (1) |
|
6.4.3.1 Early-minus-late discriminator |
|
|
181 | (1) |
|
6.4.3.2 Signal decimation |
|
|
182 | (1) |
|
6.4.4 Hardware-dependent methods |
|
|
182 | (2) |
|
|
184 | (1) |
|
6.4.5.1 "Bitwise processing a paradigm for deriving parallel algorithms" |
|
|
184 | (1) |
|
6.4.5.2 Pre-calculation of replicas |
|
|
185 | (1) |
|
6.5 Applications of high-end real-time software receivers |
|
|
185 | (2) |
|
6.5.1 Instant positioning |
|
|
186 | (1) |
|
6.5.2 Ionosphere monitoring |
|
|
186 | (1) |
|
6.5.3 Ultra-tightly coupled integration with INS |
|
|
187 | (1) |
|
6.5.4 Application in education |
|
|
187 | (1) |
|
|
187 | (3) |
|
7 Common approach and common components |
|
|
190 | (17) |
|
7.1 Common approach for receiver design |
|
|
190 | (2) |
|
|
192 | (3) |
|
|
195 | (4) |
|
|
199 | (4) |
|
|
199 | (2) |
|
7.4.2 Analog-to-digital converter |
|
|
201 | (2) |
|
|
203 | (1) |
|
|
204 | (3) |
Part III Mobile positioning at present and in the future |
|
|
8 Positioning with data link: from AGPS to RTK |
|
|
207 | (31) |
|
8.1 Merging mobile and geodetic technologies |
|
|
207 | (2) |
|
8.2 Application of external information in the baseband processor |
|
|
209 | (8) |
|
8.2.1 Doppler assistance in acquisition |
|
|
210 | (4) |
|
8.2.2 Code phase assistance in acquisition |
|
|
214 | (1) |
|
8.2.3 Doppler assistance in tracking |
|
|
214 | (2) |
|
8.2.4 Navigation data assistance |
|
|
216 | (1) |
|
8.3 Application of external information in the navigation processor |
|
|
217 | (8) |
|
8.3.1 TTFF improvement: snapshot positioning |
|
|
217 | (3) |
|
8.3.2 Accuracy improvement: RTK positioning |
|
|
220 | (5) |
|
8.3.2.1 The catch: antennas |
|
|
220 | (1) |
|
8.3.2.2 Network RTK implementation: virtual reference station RTK system |
|
|
221 | (4) |
|
8.4 External information content |
|
|
225 | (2) |
|
8.4.1 Group 1: assistance data |
|
|
225 | (1) |
|
8.4.2 Group 2: additional parameters |
|
|
226 | (1) |
|
8.4.3 Group 3: differential corrections |
|
|
227 | (1) |
|
|
227 | (8) |
|
8.5.1 Pseudolite applications |
|
|
227 | (5) |
|
8.5.2 Indoor positioning with carrier phase |
|
|
232 | (1) |
|
|
233 | (2) |
|
|
235 | (3) |
|
9 Positioning without data link: from BGPS to PPP |
|
|
238 | (36) |
|
9.1 Advantages of positioning without a data link |
|
|
238 | (3) |
|
9.2 BGPS: instant positioning without network |
|
|
241 | (17) |
|
|
241 | (1) |
|
9.2.1.1 Instant positioning |
|
|
241 | (1) |
|
|
241 | (1) |
|
9.2.1.3 Less interruption during cellular operation |
|
|
242 | (1) |
|
|
242 | (1) |
|
9.2.2 History of the approach |
|
|
242 | (1) |
|
|
243 | (2) |
|
|
245 | (5) |
|
|
250 | (2) |
|
9.2.6 Required a-priori information |
|
|
252 | (1) |
|
9.2.7 Time resolution in real time |
|
|
253 | (1) |
|
|
253 | (1) |
|
9.2.7.2 Heuristic approach to search strategy |
|
|
254 | (1) |
|
9.2.8 Preliminary position estimation methods |
|
|
254 | (1) |
|
9.2.9 Instant positioning implementation in a device |
|
|
255 | (3) |
|
9.3 Precise positioning without reference station |
|
|
258 | (9) |
|
9.3.1 From a network to the global network |
|
|
258 | (5) |
|
9.3.1.1 Global correction information for mobile devices |
|
|
258 | (1) |
|
9.3.1.2 Free global corrections |
|
|
259 | (1) |
|
|
259 | (4) |
|
9.3.2 Embedded algorithms |
|
|
263 | (4) |
|
9.3.2.1 Satellite ephemeris interpolation procedure inside mobile device |
|
|
263 | (1) |
|
9.3.2.2 Precise error models |
|
|
264 | (1) |
|
|
265 | (1) |
|
|
266 | (1) |
|
|
267 | (5) |
|
|
268 | (1) |
|
|
269 | (1) |
|
9.4.3 Positioning with pilot signals |
|
|
270 | (2) |
|
|
272 | (2) |
|
10 Trends, opportunities, and prospects |
|
|
274 | (19) |
|
10.1 From Cold War competition to a business model |
|
|
274 | (1) |
|
10.2 Would you go for a "multi-mighty" receiver? |
|
|
275 | (3) |
|
10.3 From SDR to SDR we go |
|
|
278 | (3) |
|
10.4 SA off, AGPS on, mass market open |
|
|
281 | (2) |
|
10.5 Convergence of mobile and geodetic applications |
|
|
283 | (1) |
|
10.6 Synergy of the Internet and GNSS |
|
|
284 | (2) |
|
10.6.1 Integration of a mobile device into the Internet |
|
|
284 | (1) |
|
10.6.2 The Internet as correction provider |
|
|
285 | (1) |
|
10.6.3 The Internet as data link |
|
|
285 | (1) |
|
10.6.4 Improvement in GLONASS accuracy |
|
|
285 | (1) |
|
10.7 Towards a new GNSS paradigm |
|
|
286 | (3) |
|
10.7.1 Online updates and upgrades |
|
|
287 | (1) |
|
10.7.2 Programmable personality change |
|
|
287 | (1) |
|
10.7.3 Full set of online corrections |
|
|
287 | (1) |
|
10.7.4 Application of cloud computing technology |
|
|
288 | (1) |
|
10.7.5 Third-party tools and services |
|
|
288 | (1) |
|
10.7.6 One for all and all for one |
|
|
288 | (1) |
|
|
289 | (4) |
|
10.7.7.1 Network position calculation |
|
|
289 | (1) |
|
|
289 | (1) |
|
|
289 | (1) |
|
|
289 | (4) |
Part IV Testing mobile devices |
|
|
11 Testing equipment and procedures |
|
|
293 | (18) |
|
|
293 | (4) |
|
11.1.1 Multi-channel simulator |
|
|
293 | (2) |
|
11.1.2 RPS: record and playback systems |
|
|
295 | (2) |
|
|
297 | (4) |
|
11.2.1 Research and development |
|
|
298 | (1) |
|
|
298 | (1) |
|
|
299 | (1) |
|
|
299 | (1) |
|
|
300 | (1) |
|
|
301 | (4) |
|
|
301 | (1) |
|
|
302 | (2) |
|
11.3.3 Multi-GNSS test specifics |
|
|
304 | (1) |
|
11.4 Case study: new paradigm SDR simulator |
|
|
305 | (5) |
|
|
310 | (1) |
Index |
|
311 | |