Atjaunināt sīkdatņu piekrišanu

E-grāmata: Granular Dynamics, Contact Mechanics and Particle System Simulations: A DEM study

  • Formāts: PDF+DRM
  • Sērija : Particle Technology Series 24
  • Izdošanas datums: 03-Sep-2015
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319187112
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 88,63 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Particle Technology Series 24
  • Izdošanas datums: 03-Sep-2015
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319187112
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book is devoted to the Discrete Element Method (DEM) technique, a discontinuum modelling approach that takes into account the fact that granular materials are composed of discrete particles which interact with each other at the microscale level. This numerical simulation technique can be used both for dispersed systems in which the particle-particle interactions are collisional and compact systems of particles with multiple enduring contacts.

The book provides an extensive and detailed explanation of the theoretical background of DEM. Contact mechanics theories for elastic, elastic-plastic, adhesive elastic and adhesive elastic-plastic particle-particle interactions are presented. Other contact force models are also discussed, including corrections to some of these models as described in the literature, and important areas of further research are identified.

A key issue in DEM simulations is whether or not a code can reliably simulate the simplest of systems, namely the single particle oblique impact with a wall. This is discussed using the output obtained from the contact force models described earlier, which are compared for elastic and inelastic collisions. In addition, further insight is provided for the impact of adhesive particles. The author then moves on to provide the results of selected DEM applications to agglomerate impacts, fluidised beds and quasi-static deformation, demonstrating that the DEM technique can be used (i) to mimic experiments, (ii) explore parameter sweeps, including limiting values, or (iii) identify new, previously unknown, phenomena at the microscale.

In the DEM applications the emphasis is on discovering new information that enhances our rational understanding of particle systems, which may be more significant than developing a new continuum model that encompasses all microstructural aspects, which would most likely prove too complicated for practical implementation. The book will be of interestto academic and industrial researchers working in particle technology/process engineering and geomechanics, both experimentalists and theoreticians.
1 Introduction 1(12)
1.1 Origins
2(1)
1.2 Early Work
3(6)
1.3 Outline of the Book
9(1)
References
10(3)
2 Theoretical Background 13(14)
2.1 Granular Dynamics
13(5)
2.1.1 Particle Kinematics
13(1)
2.1.2 Contact Forces
14(2)
2.1.3 Timestep
16(1)
2.1.4 Damping
17(1)
2.2 Assembly Mechanics
18(7)
2.2.1 Stability Considerations
18(1)
2.2.2 Microstructure
19(2)
2.2.3 Stress
21(2)
2.2.4 Assembly Modulus
23(2)
References
25(2)
3 Contact Mechanics 27(30)
3.1 Elastic Interactions
27(12)
3.1.1 Normal Interaction
28(2)
3.1.2 Tangential Interaction
30(8)
3.1.3 Contact Moment
38(1)
3.2 Elastic-Plastic Interactions
39(7)
3.2.1 Normal Interaction
39(6)
3.2.2 Tangential Interaction and Contact Moment
45(1)
3.3 Adhesive, Elastic Interactions
46(5)
3.3.1 Normal Interaction
47(2)
3.3.2 Tangential Interaction
49(2)
3.4 Adhesive, Elastic-Plastic Interactions
51(4)
3.4.1 Normal Interaction
51(3)
3.4.2 Tangential Interaction
54(1)
References
55(2)
4 Other Contact Force Models 57(14)
4.1 Linear Spring Models
57(3)
4.2 Non-linear Spring Models
60(1)
4.3 Partially Latching Spring Models
61(2)
4.4 Adhesive Piecewise Linear Models
63(6)
References
69(2)
5 Particle Impact 71(22)
5.1 Normal Impact
71(6)
5.1.1 Elastic Impact
72(1)
5.1.2 Effect of Plastic Dissipation
73(2)
5.1.3 Effect of Surface Energy
75(2)
5.2 Oblique Impact
77(13)
5.2.1 Rigid Body Dynamics
80(2)
5.2.2 Dimensionless Groups
82(1)
5.2.3 Effect of Elasticity
82(2)
5.2.4 Effect of Plastic Dissipation
84(4)
5.2.5 Effect of Initial Spin
88(2)
5.2.6 Effect of Surface Energy
90(1)
References
90(3)
6 Agglomerate Impacts 93(30)
6.1 Agglomerate-Wall Impacts
94(24)
6.1.1 2D Simulations
94(5)
6.1.2 3D Simulations
99(19)
6.2 Agglomerate-Agglomerate Collisions
118(2)
References
120(3)
7 Fluidised Beds 123(24)
7.1 Theoretical Considerations
124(2)
7.1.1 Fluid-Particle Interaction Force
124(1)
7.1.2 Particle-Fluid Interaction Force
125(1)
7.2 2D Simulations
126(12)
7.2.1 The Transition from Fixed to Bubbling Bed
128(2)
7.2.2 The Transition from Bubbling Bed to Turbulent Bed
130(1)
7.2.3 The Transition from Turbulent to Fast Fluidisation
131(2)
7.2.4 Effect of Surface Energy
133(5)
7.3 3D Simulations
138(7)
7.3.1 Bubble Formation
140(2)
7.3.2 Bubble Rise
142(1)
7.3.3 Bubble Splitting
143(2)
References
145(2)
8 Quasi-static Deformation 147
8.1 Failure Conditions for Regular Arrays of Rigid Spheres
148(6)
8.1.1 Solutions
150(4)
8.2 2D Simulations
154(18)
8.2.1 Direct Shear Tests
155(5)
8.2.2 Shear Bands
160(4)
8.2.3 Simple Shear
164(8)
8.3 3D Simulations
172(21)
8.3.1 Axisymmetric Compression
173(10)
8.3.2 General 3D Stress States
183(10)
References
193
Dr. Colin Thornton, School of Chemical Engineering, University of Birmingham, UK, has published over 100 papers and has an h factor of 30. His main area of expertise is powder technology and in particular he is one of the pioneers of the discrete element method (DEM), having made enormous contributions to the application of DEM to theoretical soil mechanics and problems in particulate technology during the last 30 years. Supported by British research council grants and 11 industrial contracts he has developed leading DEM software for the simulation of a variety of systems, which proved outstandingly versatile and is now widely employed for modeling of particulate systems across disciplines.