Atjaunināt sīkdatņu piekrišanu

Graph-Based Methods in Computer Vision: Developments and Applications [Hardback]

Edited by , Edited by , Edited by
  • Formāts: Hardback, 410 pages, weight: 1573 g
  • Izdošanas datums: 30-Jul-2012
  • Izdevniecība: Idea Group,U.S.
  • ISBN-10: 1466618914
  • ISBN-13: 9781466618916
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 253,69 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 410 pages, weight: 1573 g
  • Izdošanas datums: 30-Jul-2012
  • Izdevniecība: Idea Group,U.S.
  • ISBN-10: 1466618914
  • ISBN-13: 9781466618916
Citas grāmatas par šo tēmu:
"This book addresses problems related to applying graph-based methods in computer vision, including accounts of the latest developments in graph-based methodology and its application to a variety of problems in computer vision such as image segmentation,image matching and classification where graph-based methods play a vital role"--Provided by publisher.

Addressing problems related to applying graph-based methods in computer vision, computer, information, and other scientists present accounts of recent developments in graph-based methodology and its application to image matching, image segmentation, image and video analysis, and image processing. The topics include geometric-edge random graph model for image representation, unsupervised and supervised image segmentation using graph partitioning, generative group activity analysis with quaternion descriptor, discriminating feature selection in image classification and retrieval, and region-based graph learning towards large scale image annotation. Annotation ©2012 Book News, Inc., Portland, OR (booknews.com)
Preface xiv
Acknowledgment xviii
Section 1 Graph-Based Methods for Image Matching
Chapter 1 Graph Matching Techniques for Computer Vision
1(41)
Mario Vento
Pasquale Foggia
Chapter 2 Geometric-Edge Random Graph Model for Image Representation
42(16)
Bo Jiang
Jing Tang
Bin Luo
Chapter 3 The Node-to-Node Graph Matching Algorithm Schema
58(14)
Guoxing Zhao
Jixin Ma
Section 2 Graph-Based Methods for Image Segmentation
Chapter 4 Unsupervised and Supervised Image Segmentation Using Graph Partitioning
72(23)
Charles-Edmond Bichot
Chapter 5 Motion Segmentation and Matting by Graph Cut
95(23)
Jiangjian Xiao
Chapter 6 Hypergraph Based Visual Segmentation and Retrieval
118(22)
Yuchi Huang
Chapter 7 Recent Advances on Graph-Based Image Segmentation Techniques
140(16)
Chao Zeng
Wenjing Jia
Xiangjian He
Min Xu
Section 3 Graph-Based Methods for Image and Video Analysis
Chapter 8 Graph Embedding Using Dissimilarities with Applications in Classification
156(18)
Horst Bunke
Kaspar Riesen
Chapter 9 Generative Group Activity Analysis with Quaternion Descriptor
174(16)
Guangyu Zhu
Shuicheng Yan
Tony X. Han
Changsheng Xu
Chapter 10 Shape Retrieval and Classification Based on Geodesic Paths in Skeleton Graphs
190(26)
Xiang Bai
Chunyuan Li
Xingwei Yang
Longin Jan Latecki
Chapter 11 Discriminative Feature Selection in Image Classification and Retrieval
216(15)
Shang Liu
Xiao Bai
Chapter 12 Normalized Projection and Graph Embedding via Angular Decomposition
231(13)
Dengdi Sun
Chris Ding
Jin Tang
Bin Luo
Chapter 13 Region-Based Graph Learning Towards Large Scale Image Annotation
244(17)
Bao Bing-Kun
Yan Shuicheng
Chapter 14 Copy Detection Using Graphical Model: HMM for Frame Fusion
261(20)
Shikui Wei
Yao Zhao
Zhenfeng Zhu
Section 4 Graph-Based Methods for Image Processing
Chapter 15 Multi-Scale Exemplary Based Image Super-Resolution with Graph Generalization
281(21)
Wang Jinjun
Chapter 16 Graph Heat Kernel Based Image Smoothing
302(29)
Zhang Fan
Edwin R. Hancock
Liu Shang
Compilation of References 331(33)
About the Contributors 364(8)
Index 372