Atjaunināt sīkdatņu piekrišanu

E-grāmata: Graph-Based Representations in Pattern Recognition: 10th IAPR-TC-15 International Workshop, GbRPR 2015, Beijing, China, May 13-15, 2015. Proceedings

Edited by , Edited by , Edited by , Edited by
  • Formāts: PDF+DRM
  • Sērija : Lecture Notes in Computer Science 9069
  • Izdošanas datums: 04-May-2015
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319182247
  • Formāts - PDF+DRM
  • Cena: 53,52 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Lecture Notes in Computer Science 9069
  • Izdošanas datums: 04-May-2015
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319182247

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book constitutes the refereed proceedings of the 10th IAPR-TC-15 International Workshop on Graph-Based Representations in Pattern Recognition, GbRPR 2015, held in Beijing, China, in May 2015. The 36 papers presented in this volume were carefully reviewed and selected from 53 submissions. The accepted papers cover diverse issues of graph-based methods and applications, with 7 in graph representation,15 in graph matching, 7 in graph clustering and classification, and 7 in graph-based applications.

Graph-based Representation.- Approximation of Graph Edit Distance in Quadratic Time.- Data Graph Formulation as the Minimum-Weight Maximum-Entropy Problem.- An Entropic Edge Assortativity Measure.- A Subpath Kernel for Learning Hierarchical Image Representations.- Coupled-Feature Hypergraph Representation for Feature Selection.- Reeb Graphs Through Local Binary Patterns.- Incremental embedding within a dissimilarity-based framework.- Graph Matching.- A First Step Towards Exact Graph Edit Distance Using Bipartite Graph Matching.- Consensus of Two Graph Correspondences through a Generalisation of the Bipartite Graph Matching Algorithm.- Revisiting Volegnant-Jonker for Approximating Graph Edit Distance.- A Hypergraph Matching Framework for Refining Multi-source Feature Correspondences.- Kite Recognition by means of Graph Matching.- GEM++: a tool for solving substitution-tolerant subgraph isomorphism.- A Graph Database Repository and Performance Evaluation Metrics for Graph Edit Distance.- Improving Hausdorff Edit Distance Using Structural Node Context.- Learning Graph Model for Different Dimensions Image Matching.- VF2 Plus: An Improved Version of VF2 For Biological Graphs.- Report on the First Contest on Graph Matching Algorithms for Pattern Search in Biological Databases.- Approximate Graph Edit Distance Computation Combining Bipartite Matching and Exact Neighborhood Substructure Distance.- Multi-layer Tree Matching Using HSTs.- Large-scale Graph Indexing using Binary Embeddings of Node Contexts.- Attributed Relational Graph Matching with Sparse Relaxation and Bistochastic Normalization.- Graph Clustering and Classification.-On the Influence of Node Centralities on Graph Edit Distance for Graph Classification.- A Mixed Weisfeiler-Lehman Graph Kernel.- A Quantum Jensen-Shannon Graph Kernel using Discrete-time Quantum Walks.- Density Based Cluster Extension and Dominant Sets Clustering.- Salient Object Segmentation from Stereoscopic Images.- Causal Video Segmentation using Superseeds and Graph Matching.- Fast Minimum Spanning Tree based Clustering Algorithms on Local Neighborhood Graph.- Graph-based Application.- From bags to graphs of stereo subgraphs in order to predict molecule's properties.- Thermodynamics of Time Evolving Networks.- Isometric Mapping Hashing.- Skeletal Graphs from Schrodinger Magnitude and Phase.- Graph Based Lymphatic Vessel Wall Localisation and Tracking.- A Comic Retrieval System Based on Multilayer Graph Representation and Graph Mining.- Learning High-Order Structures for Texture Retrieval.