Atjaunināt sīkdatņu piekrišanu

Graph Neural Networks for Natural Language Processing: A Survey [Mīkstie vāki]

  • Formāts: Paperback / softback, 224 pages, height x width: 234x156 mm, weight: 322 g
  • Sērija : Foundations and Trends® in Machine Learning
  • Izdošanas datums: 25-Jan-2023
  • Izdevniecība: now publishers Inc
  • ISBN-10: 1638281424
  • ISBN-13: 9781638281429
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 113,24 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 224 pages, height x width: 234x156 mm, weight: 322 g
  • Sērija : Foundations and Trends® in Machine Learning
  • Izdošanas datums: 25-Jan-2023
  • Izdevniecība: now publishers Inc
  • ISBN-10: 1638281424
  • ISBN-13: 9781638281429
Citas grāmatas par šo tēmu:
Deep learning has become the dominant approach in addressing various tasks in Natural Language Processing (NLP). Although text inputs are typically represented as a sequence of tokens, there is a rich variety of NLP problems that can be best expressed with a graph structure. As a result, there is a surge of interest in developing new deep learning techniques on graphs for a large number of NLP tasks. In this monograph, the authors present a comprehensive overview on Graph Neural Networks (GNNs) for Natural Language Processing. They propose a new taxonomy of GNNs for NLP, which systematically organizes existing research of GNNs for NLP along three axes: graph construction, graph representation learning, and graph based encoder-decoder models. They further introduce a large number of NLP applications that exploits the power of GNNs and summarize the corresponding benchmark datasets, evaluation metrics, and open-source codes. Finally, they discuss various outstanding challenges for making the full use of GNNs for NLP as well as future research directions. This is the first comprehensive overview of Graph Neural Networks for Natural Language Processing. It provides students and researchers with a concise and accessible resource to quickly get up to speed with an important area of machine learning research.
1. Introduction
2. Graph Based Algorithms for NLP
3. Graph Neural Networks
4. Graph Construction Methods for NLP
5. Graph Representation Learning for NLP
6. GNN Based Encoder-Decoder Models
7. Applications
8. General Challenges and Future Directions
9. Conclusions
References