|
|
1 | |
|
|
1 | (3) |
|
|
4 | (3) |
|
|
7 | (2) |
|
1.4 How Large Is a Large Dataset? |
|
|
9 | (13) |
|
1.5 The Effects of Largeness |
|
|
17 | (1) |
|
|
18 | (1) |
|
|
19 | (1) |
|
|
20 | (1) |
|
|
20 | (1) |
|
|
21 | (1) |
|
|
21 | (1) |
|
|
22 | (1) |
|
|
22 | (1) |
|
|
23 | (1) |
|
1.8 What Is on the Website |
|
|
24 | (2) |
|
1.8.1 Files and Code for Figures |
|
|
24 | (1) |
|
|
24 | (1) |
|
|
25 | (1) |
|
|
26 | (5) |
Part I Basics |
|
|
|
31 | (24) |
|
|
31 | (1) |
|
2.2 Plots for Categorical Data |
|
|
31 | (1) |
|
2.2.1 Barcharts and Spineplots for Univariate Categorical Data |
|
|
32 | (1) |
|
2.2.2 Mosaic Plots for Multi-dimensional Categorical Data |
|
|
33 | (3) |
|
2.3 Plots for Continuous Data |
|
|
36 | (1) |
|
2.3.1 Dotplots, Boxplots, and Histograms |
|
|
36 | (3) |
|
2.3.2 Scatterplots, Parallel Coordinates, and the Grand Tour |
|
|
39 | (5) |
|
|
44 | (3) |
|
|
47 | (2) |
|
2.6 Contour Plots and Image Maps |
|
|
49 | (1) |
|
|
50 | (1) |
|
|
51 | (4) |
|
|
55 | (18) |
|
|
55 | (1) |
|
3.2 Upscaling as a General Problem in Statistics |
|
|
55 | (1) |
|
|
56 | (1) |
|
|
57 | (1) |
|
|
58 | (2) |
|
|
60 | (2) |
|
|
62 | (1) |
|
|
62 | (1) |
|
|
63 | (2) |
|
3.4.3 Parallel Coordinates |
|
|
65 | (2) |
|
3.5 From Areas to Points and Back |
|
|
67 | (2) |
|
3.5.1 α-Blending and Tonal Highlighting |
|
|
69 | (2) |
|
|
71 | (1) |
|
|
72 | (1) |
|
4 Interacting with Graphics |
|
|
73 | (32) |
|
|
73 | (1) |
|
|
74 | (1) |
|
4.3 Interaction and Data Displays |
|
|
75 | (1) |
|
|
75 | (2) |
|
4.3.2 Selection and Linking |
|
|
77 | (1) |
|
4.3.3 Selection Sequences |
|
|
78 | (4) |
|
4.3.4 Varying Plot Characteristics |
|
|
82 | (2) |
|
4.3.5 Interfaces and Interaction |
|
|
84 | (2) |
|
|
86 | (1) |
|
4.3.7 Warnings and Redmarking |
|
|
87 | (1) |
|
4.4 Interaction and Large Datasets |
|
|
88 | (1) |
|
|
88 | (1) |
|
4.4.2 Selection, Linking, and Highlighting |
|
|
89 | (3) |
|
4.4.3 Varying Plot Characteristics for Large Datasets |
|
|
92 | (6) |
|
4.5 New Interactive Tasks |
|
|
98 | (1) |
|
|
98 | (1) |
|
4.5.2 Aggregation and Recoding |
|
|
99 | (1) |
|
|
99 | (1) |
|
|
99 | (2) |
|
4.5.5 Managing Screen Layout |
|
|
101 | (1) |
|
4.6 Summary and Future Directions |
|
|
101 | (4) |
Part II Applications |
|
|
5 Multivariate Categorical Data Mosaic Plots |
|
|
105 | (20) |
|
|
105 | (1) |
|
|
105 | (2) |
|
5.2.1 Weighted Displays and Weights in Datasets |
|
|
107 | (1) |
|
5.3 Displays and Techniques in One Dimension |
|
|
107 | (3) |
|
5.3.1 Sorting and Reordering |
|
|
110 | (1) |
|
5.3.2 Grouping, Averaging, and Zooming |
|
|
111 | (2) |
|
|
113 | (1) |
|
5.4.1 Combinatorics of Mosaic Plots |
|
|
114 | (2) |
|
5.4.2 Cases per Pixel and Pixels per Case |
|
|
116 | (1) |
|
5.4.3 Calibrating the Eye |
|
|
116 | (3) |
|
|
119 | (3) |
|
|
122 | (1) |
|
|
123 | (1) |
|
|
123 | (2) |
|
|
125 | (18) |
|
|
125 | (1) |
|
|
126 | (1) |
|
6.1.2 Visual Methods for Continuous Variables |
|
|
127 | (1) |
|
6.1.3 Scaling Up Multiple Views for Larger Datasets |
|
|
128 | (1) |
|
6.2 Beginning to Work with a Million Cases |
|
|
128 | (1) |
|
6.2.1 What Happens in GGobi, a Real-time System? |
|
|
128 | (1) |
|
6.2.2 Reducing the Number of Cases |
|
|
129 | (2) |
|
|
131 | (3) |
|
6.2.4 Screen Real Estate Indexing |
|
|
134 | (1) |
|
|
135 | (2) |
|
|
137 | (1) |
|
|
137 | (1) |
|
6.4.2 Viewing a Tour of the Data |
|
|
137 | (1) |
|
|
138 | (2) |
|
6.5 Current and Future Developments |
|
|
140 | (1) |
|
6.5.1 Improving the Methods |
|
|
140 | (1) |
|
|
141 | (1) |
|
6.5.3 How Might These Tools Be Used? |
|
|
141 | (2) |
|
7 Multivariate Continuous Data Parallel Coordinates |
|
|
143 | (14) |
|
|
143 | (1) |
|
7.2 Interpolations and Inner Products |
|
|
144 | (1) |
|
7.3 Generalized Parallel Coordinate Geometry |
|
|
145 | (4) |
|
7.4 A New Family of Smooth Plots |
|
|
149 | (1) |
|
|
150 | (1) |
|
|
150 | (2) |
|
7.5.2 Hyperspectral Data: Dealing with Massive Datasets |
|
|
152 | (2) |
|
7.6 Detecting SecondOrder Structures |
|
|
154 | (1) |
|
|
155 | (2) |
|
|
157 | (20) |
|
|
157 | (1) |
|
|
158 | (1) |
|
|
159 | (2) |
|
8.2.2 Force Layout Methods |
|
|
161 | (1) |
|
8.2.3 Individual Node Movement Algorithms |
|
|
162 | (1) |
|
|
162 | (2) |
|
8.3.1 Speed Considerations |
|
|
164 | (1) |
|
8.3.2 Interaction and Layout |
|
|
165 | (1) |
|
|
166 | (1) |
|
8.5 Example: International Calling Fraud |
|
|
167 | (5) |
|
8.6 Languages for Description and Layouts |
|
|
172 | (1) |
|
|
172 | (1) |
|
8.6.2 Graph Specification via VizML |
|
|
173 | (1) |
|
|
174 | (3) |
|
|
177 | (26) |
|
|
177 | (1) |
|
9.2 Growing Trees for Large Datasets |
|
|
178 | (1) |
|
9.2.1 Scalability of the CART Growing Algorithm |
|
|
179 | (2) |
|
9.2.2 Scalability of Pruning Methods |
|
|
181 | (2) |
|
9.2.3 Statistical Tests and Large Datasets |
|
|
183 | (1) |
|
9.2.4 Using Trees for Large Datasets in Practice |
|
|
184 | (3) |
|
9.3 Visualization of Large Trees |
|
|
187 | (1) |
|
|
187 | (5) |
|
9.3.2 Sectioned Scatterplots |
|
|
192 | (3) |
|
|
195 | (3) |
|
9.4 Forests for Large Datasets |
|
|
198 | (4) |
|
|
202 | (1) |
|
|
203 | (24) |
|
10.1 Introduction and Background |
|
|
203 | (2) |
|
10.2 Mice and Elephant Plots and Random Sampling |
|
|
205 | (5) |
|
|
210 | (1) |
|
10.3.1 Windowed Biased Sampling |
|
|
211 | (2) |
|
10.3.2 BoxCox Biased Sampling |
|
|
213 | (2) |
|
10.4 Quantile Window Sampling |
|
|
215 | (6) |
|
10.5 Commonality of Flow Rates |
|
|
221 | (6) |
|
11 Graphics of a Large Dataset |
|
|
227 | (24) |
|
|
227 | (1) |
|
11.2 QuickStart Guide Data Visualization for Large Datasets |
|
|
228 | (1) |
|
11.3 Visualizing the InfoVis 2005 Contest Dataset |
|
|
229 | (1) |
|
|
229 | (1) |
|
|
230 | (1) |
|
|
230 | (5) |
|
11.3.4 Multivariate Displays |
|
|
235 | (4) |
|
11.3.5 Grouping and Selection |
|
|
239 | (3) |
|
|
242 | (5) |
|
11.3.7 Presenting Results |
|
|
247 | (2) |
|
|
249 | (2) |
References |
|
251 | (12) |
Authors |
|
263 | (4) |
Index |
|
267 | |