Atjaunināt sīkdatņu piekrišanu

Graphs in Biomedical Image Analysis: 6th International Workshop, GRAIL 2024, Held in Conjunction with MICCAI 2024, Marrakesh, Morocco, October 6, 2024, Proceedings [Mīkstie vāki]

Edited by , Edited by
  • Formāts: Paperback / softback, 142 pages, height x width: 235x155 mm, 37 Illustrations, color; 7 Illustrations, black and white; XII, 142 p. 44 illus., 37 illus. in color., 1 Paperback / softback
  • Sērija : Lecture Notes in Computer Science 15182
  • Izdošanas datums: 02-Mar-2025
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3031832426
  • ISBN-13: 9783031832420
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 46,91 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 55,19 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 142 pages, height x width: 235x155 mm, 37 Illustrations, color; 7 Illustrations, black and white; XII, 142 p. 44 illus., 37 illus. in color., 1 Paperback / softback
  • Sērija : Lecture Notes in Computer Science 15182
  • Izdošanas datums: 02-Mar-2025
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3031832426
  • ISBN-13: 9783031832420
Citas grāmatas par šo tēmu:
This book constitutes the refereed proceedings of the 6th International Workshop on Graphs in Biomedical Image Analysis, GRAIL 2024, held in conjunction with MICCAI 2024, in Marrakesh, Morocco, on October 6, 2024. The 12 full papers included in this volume were carefully reviewed and selected from 19 submissions.





The papers cover a wide range of topics, such as deep/machine learning on graphs; probabilistic graphical models for biomedical data analysis; signal processing on graphs for biomedical image analysis; explainable AI (XAI) methods in geometric deep learning; big data analysis with graphs; graphs for small data sets; semantic graph research in medicine; modeling and applications of graph symmetry/equivariance; or graph generative models.