Atjaunināt sīkdatņu piekrišanu

E-grāmata: Gravitation: From the Hubble Length to the Planck Length

Edited by (University of Lecce, Italy), Edited by (University of Rome, Tor Vergata, Italy), Edited by (University of Rome, Tor Vergata, Italy), Edited by (University of Lecce, Italy), Edited by (University of Insubria, Como, Italy)
  • Formāts - EPUB+DRM
  • Cena: 275,50 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Although gravity is the dominant force of nature at large distances (from intermediate scales to the Hubble length), it is the weakest of forces in particle physics, though it is believed to become important again at very short scales (the Planck length). The conditions created in particle accelerators are similar to those at the time of the early universe. While particle physics offers insight to early universe physics, there is a need to understand gravity at extremes of large and short distances to further understand cosmology and the development of the universe. Gravitation: From the Hubble Length to the Planck Length fulfills this need by providing an overview of relativistic astrophysics, early universe physics, cosmology, and their interface with particle physics.

Written by international experts, this reference presents up-to-date information on classical relativity, astrophysics, and theoretical and experimental particle physics. The introduction sets the scene and provides a context for the remaining chapters. Chapters cover an extensive array of topics, from refined experimental techniques in gravitational physics to cosmology and the quantum frontier. The book concludes with a discussion of the connection among particles, fields, strings, and branes.

This compilation shows how gravity plays a fundamental role in astronomy, astrophysics, and cosmology by exploring domains from the microscopic, such as black holes, to superclusters of galaxies that form the large-scale texture of the present-day cosmos. Moreover, with its theoretical and experimental focus on the foundations of gravity, Gravitation proves to be an invaluable resource for current and future research.

Recenzijas

"the volume is an interesting collection of articles. The most valuable chapters are those containing the extensive discussions of the experimental tests of relativity. They capture the excitement and recent progress very well." -Professor R. Ellis, Contemporary Physics

Preface ix
1 Introduction
Roberto Peron and Amedeo Balbi
1(6)
1.1 Gravitation in the solar system and beyond
3(1)
1.2 Cosmological issues
4(1)
1.3 The other side: gravitation in the quantum regime
5(1)
1.4 Gravitation as a universal phenomenon
5(2)
2 Probing spacetime in the solar system
Bruno Bertotti
7(20)
2.1 Introduction
7(2)
2.2 Distance
9(5)
2.2.1 Fundamentals
9(1)
2.2.2 Techniques
10(2)
2.2.3 Lunar Laser Ranging
12(2)
2.3 Angle
14(4)
2.3.1 Fundamentals
14(1)
2.3.2 Techniques
14(2)
2.3.3 Space astrometry: GAIA
16(2)
2.4 Frequency
18(6)
2.4.1 Fundamentals
18(1)
2.4.2 Techniques
19(2)
2.4.3 The Cassini conjunction experiment
21(3)
Acknowledgments
24(1)
References
24(3)
3 Frame-dragging and its measurement
Ignazio Ciufolini
27(44)
3.1 Some historical background on the measurement of gravitomagnetism and the gravitational field inside a rotating shell
27(3)
3.2 Frame-dragging, the weak-field slow-motion analogy: an invariant characterization of gravitomagnetism
30(3)
3.3 Gravitomagnetic phenomena in test gyroscopes, test particles, clocks and photons
33(3)
3.4 Time delay due to the spin of a central body and inside a rotating shell
36(12)
3.4.1 Spin time delay and gravitational lensing
36(6)
3.4.2 Some astrophysical sources and spin time delay
42(2)
3.4.3 Spacetime geometry inside a rotating shell
44(2)
3.4.4 Time delay inside a slowly rotating massive shell
46(1)
3.4.5 Some astrophysical sources and the spin time delay due to an external rotating shell
47(1)
3.4.6 Discussion and conclusion on spin time delay
47(1)
3.5 Measurement of gravitomagnetism with laser-ranged satellites
48(19)
3.5.1 LARES (LAser RElativity Satellite)
48(2)
3.5.2 The previous 1995-2001 measurements of the Lense-Thirring effect using the node of LAGEOS and the node and perigee of LAGEOS II
50(9)
3.5.3 The recent 2004 measurements of the Lense-Thirring effect using only the nodes of the LAGEOS satellites
59(8)
References
67(4)
4 The special relativistic Equivalence Principle: gravity theory's foundation
Kenneth Nordtvedt
71(26)
4.1 Introduction
71(4)
4.2 Gravitomagnetic precession due to moving gravity source
75(3)
4.3 Geodetic precession due to motion through gravity
78(1)
4.4 General consideration of the observables
79(6)
4.4.1 Moving gravity source
84(1)
4.5 Requirements for equivalent predictions in gravity
85(5)
4.5.1 Geometrical interpretation
88(1)
4.5.2 Moving gravity source
88(2)
4.6 Periastron precession
90(2)
4.6.1 A historical speculation
91(1)
4.7 Summary
92(1)
Acknowledgment
93(1)
Appendix
93(1)
References
94(3)
5 Lunar laser ranging: a comprehensive probe of post-Newtonian gravity
Kenneth Nordtvedt
97(18)
5.1 Introduction
97(3)
5.2 Dynamical equations for bodies, light and clocks
100(4)
5.3 LLR's key science-related range signals
104(6)
5.3.1 Violation of the universality of free-fall
104(3)
5.3.2 Geodetic precession of the local inertial frame
107(1)
5.3.3 Time evolution of gravity's coupling strength G
108(2)
5.4 An additional Yukawa interaction?
110(1)
5.5 Gravitomagnetism
110(2)
5.6 Inductive inertial forces
112(1)
Acknowledgment
112(1)
References
113(2)
6 The early Universe and the cosmic microwave background
Amedeo Balbi
115(32)
6.1 Introduction
115(1)
6.2 The standard cosmological model
115(9)
6.2.1 The big bang model
116(2)
6.2.2 Inflation
118(4)
6.2.3 The cosmic budget
122(2)
6.3 The cosmic microwave background
124(10)
6.3.1 The primordial plasma and the CMB
125(1)
6.3.2 The anisotropy of the CMB
125(1)
6.3.3 The statistics of the CMB
126(3)
6.3.4 Computing the anisotropy
129(5)
6.4 Past, present and future of CMB observation
134(8)
6.4.1 The COBE satellite
134(1)
6.4.2 The hunt for the peaks
135(2)
6.4.3 The WMAP satellite
137(4)
6.4.4 The Planck Surveyor
141(1)
6.5 Conclusions
142(2)
References
144(3)
7 Strings, gravity and particle physics
Augusto Sagnotti and Alexander Sevrin
147(36)
7.1 Introduction
147(4)
7.2 From particles to fields
151(9)
7.3 From fields to strings
160(6)
7.4 From strings to branes
166(4)
7.5 Some applications
170(9)
7.5.1 Particle physics on branes?
170(3)
7.5.2 Can strings explain black hole thermodynamics?
173(4)
7.5.3 AdS/CFT: strings for QCD mesons or is the universe a hologram?
177(2)
Acknowledgments
179(1)
References
180(3)
Index 183


I. Ciufolini, E. Coccia, V. Gorini, N. Vittorio. R. Person